Math 1297, Calculus II

Lecture Section 8
Proofs (and hints) to know for Test 1

1. Show $\vec{a} \times \vec{b}$ is perpendicular to \vec{a}. (Hint: Dot $\vec{a} \times \vec{b}$ with \vec{a} and show it equals zero. See p. 852.)
2. Show the inverse derivative formula $(7.1): f^{-1^{\prime}}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$. (Hint: Don't use the book's technique on p. 418. Instead, start with $f\left(f^{-1}(x)\right)=x$ and take the derivative of both sides, using the chain rule on the left side: $f^{\prime}\left(f^{-1}(x)\right) f^{-1^{\prime}}(x)=1$. Solve for the term $f^{-1^{\prime}}(x)$.)
3. Show $\frac{d}{d x} \ln (x)=\frac{1}{x}$, assuming you know that $\frac{d}{d x} e^{x}=e^{x}$. (Hint: Special case of 3 . Start with $e^{\ln (x)}=x$, differentiate, simplify. See p. 441.)
4. Show $\frac{d}{d x} \arctan (x)=\frac{1}{1+x^{2}}$. (Hint: Special case of 3. Start with $\tan (\arctan (x))=x$, differentiate, simplify using the appropriate triangle..)
5. Show $\log _{a}(x)=\frac{\ln (x)}{\ln (a)}$. (Hint: $y=\log _{a}(x) \Longleftrightarrow a^{y}=x$. Now take ln of both sides.)
6. Show $\frac{d}{d x} a^{x}=a^{x} \ln (a)$, assuming you know that $\frac{d}{d x} e^{x}=e^{x}$. (Hint: Rewrite a^{x} as $\left(e^{\ln (a)}\right)^{x}=e^{x \ln (a)}$. Differentiate.)
7. Show $\frac{d}{d x} \cosh (x)=\sinh (x)$ (or vice versa). (Hint: Direct computation using the definition of $\sinh (x)$ and $\cosh (x)$.)
8. Show $\int \tan (x) d x=\ln |\sec (x)|+C$. (Hint: Write $\tan (x)$ as $\frac{\sin (x)}{\cos (x)}$ and integrate with a " u-substitution": $u=\cos (x))$.
