Math 1297, Calculus II Lecture Section 8 Proofs (and hints) to know for Test 1

- 1. Show $\vec{a} \times \vec{b}$ is perpendicular to \vec{a} . (Hint: Dot $\vec{a} \times \vec{b}$ with \vec{a} and show it equals zero. See p. 852.)
- 2. Show the inverse derivative formula (7.1): $f^{-1'}(x) = \frac{1}{f'(f^{-1}(x))}$. (Hint: Don't use the book's technique on p. 418. Instead, start with $f(f^{-1}(x)) = x$ and take the derivative of both sides, using the chain rule on the left side: $f'(f^{-1}(x))f^{-1'}(x) = 1$. Solve for the term $f^{-1'}(x)$.)
- 3. Show $\frac{d}{dx}\ln(x) = \frac{1}{x}$, assuming you know that $\frac{d}{dx}e^x = e^x$. (Hint: Special case of 3. Start with $e^{\ln(x)} = x$, differentiate, simplify. See p. 441.)
- 4. Show $\frac{d}{dx} \arctan(x) = \frac{1}{1+x^2}$. (Hint: Special case of 3. Start with $\tan(\arctan(x)) = x$, differentiate, simplify using the appropriate triangle..)
- 5. Show $\log_a(x) = \frac{\ln(x)}{\ln(a)}$. (Hint: $y = \log_a(x) \iff a^y = x$. Now take \ln of both sides.)
- 6. Show $\frac{d}{dx}a^x = a^x \ln(a)$, assuming you know that $\frac{d}{dx}e^x = e^x$. (Hint: Rewrite a^x as $(e^{\ln(a)})^x = e^{x \ln(a)}$. Differentiate.)
- 7. Show $\frac{d}{dx}\cosh(x) = \sinh(x)$ (or vice versa). (Hint: Direct computation using the definition of $\sinh(x)$ and $\cosh(x)$.)
- 8. Show $\int \tan(x) dx = \ln |\sec(x)| + C$. (Hint: Write $\tan(x)$ as $\frac{\sin(x)}{\cos(x)}$ and integrate with a "u-substitution": $u = \cos(x)$).