Math 1297: Calculus II. Test 3 Practice Problems. Prof. Bruce Peckham

- 1. State the ϵ -N definition of what $a_n \to 3$ means.
- 2. State the definition of what it means to say $\sum_{n=1}^{\infty} a_n = 10$. You may assume the definition of the limit of a sequence is already known.
- 3. State whether the following series converge absolutely, converge conditionally, or diverge. Justify briefly.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$

(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$
(c) $\sum_{n=3}^{\infty} \frac{n}{n^3 + 5}$
(d) $\sum_{n=1}^{\infty} ne^{-n}$

- 4. What conclusion do you get from the ratio test on the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^2}$?
- 5. What is the interval of convergence for the following power series? Justify your answers.

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(3x+1)^n}{n}$$

6. Use the fact that the geometric series $\sum_{n=0}^{\infty} x^n$ converges for |x| < 1 to find a power series to represent the following functions. State the radius of convergence for each.

(a)
$$f(x) = \frac{1}{4-x}$$

(b) $g(x) = \int \frac{1}{1-x^4} dx$. Assume $g(0) = 3$.

7. Find the Taylor polynomial $T_3(x)$ for $f(x) = \frac{1}{x}$ expanded around a = 1. Show your work.

8. If
$$\sum_{n=1}^{\infty} a_n = 10$$
 and $s_n = a_1 + \dots + a_n$, then
(a) what is $\lim_{n \to \infty} s_n$

(b) what is $\lim_{n \to \infty} a_n$?

9. True or False? If false, justify with a counterexample. If true, give a brief justification of why it is true.

10. Find the first 5 coefficients $(c_0, c_1, c_2, c_3, c_4)$ in the power series for $(\sum_{n=0}^{\infty} \frac{x^n}{n!})(\sum_{n=0}^{\infty} \frac{x^n}{n!})$.

n=1

- 11. How big must N be in order to make sure that the finite sum $\sum_{n=1}^{N} \frac{(-1)^{n+1}}{n}$ approximates the infinite sum $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ to within 0.01? Explain.
- 12. The Taylor series for the function $f(x) = e^x$ is known to be $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Use the Taylor remainder formula to determine the left hand endpoint a of an interval (a, 0) so that the finite sum $1 + x + \frac{x^2}{2!}$ approximates e^x to within $\frac{1}{6} \times 10^{-3}$ on the whole interval (a, 0).
- 13. If $0 \le b_n \le a_n$ for n = 1, 2, 3, ..., and $\sum_{n=1}^{\infty} a_n = 100$, prove that $\sum_{n=1}^{\infty} b_n$ converges.
- 14. Sketch and label any 2 level curves for $f(x, y) = x^2 + y^2$.

n=1