1. State the $\epsilon-N$ definition of what $a_{n} \rightarrow 3$ means.
2. State the definition of what it means to say $\sum_{n=1}^{\infty} a_{n}=10$. You may assume the definition of the limit of a sequence is already known.
3. State whether the following series converge absolutely, converge conditionally, or diverge. Justify briefly.
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$
(c) $\sum_{n=3}^{\infty} \frac{n}{n^{3}+5}$
(d) $\sum_{n=1}^{\infty} n e^{-n}$
4. What conclusion do you get from the ratio test on the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$?
5. What is the interval of convergence for the following power series? Justify your answers.
(a) $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
(b) $\sum_{n=1}^{\infty} \frac{(3 x+1)^{n}}{n}$
6. Use the fact that the geometric series $\sum_{n=0}^{\infty} x^{n}$ converges for $|x|<1$ to find a power series to represent the following functions. State the radius of convergence for each.
(a) $f(x)=\frac{1}{4-x}$
(b) $g(x)=\int \frac{1}{1-x^{4}} d x$. Assume $g(0)=3$.
7. Find the Taylor polynomial $T_{3}(x)$ for $f(x)=\frac{1}{x}$ expanded around $a=1$. Show your work.
8. If $\sum_{n=1}^{\infty} a_{n}=10$ and $s_{n}=a_{1}+\cdots+a_{n}$, then
(a) what is $\lim _{n \rightarrow \infty} s_{n}$
(b) what is $\lim _{n \rightarrow \infty} a_{n}$?
9. True or False? If false, justify with a counterexample. If true, give a brief justification of why it is true.
(a) If $\sum_{n=1}^{\infty} c_{n}(x-2)^{n}$ converges for $x=0$, then the series also converges for $x=3$.
(b) If $0 \leq a_{n} \leq b_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ diverges implies $\sum_{n=1}^{\infty} a_{n}$ diverges.
10. Find the first 5 coefficients $\left(c_{0}, c_{1}, c_{2}, c_{3}, c_{4}\right)$ in the power series for $\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} \frac{x^{n}}{n!}\right)$.
11. How big must N be in order to make sure that the finite sum $\sum_{n=1}^{N} \frac{(-1)^{n+1}}{n}$ approximates the infinite sum $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ to within 0.01? Explain.
12. The Taylor series for the function $f(x)=e^{x}$ is known to be $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. Use the Taylor remainder formula to determine the left hand endpoint a of an interval $(a, 0)$ so that the finite sum $1+x+\frac{x^{2}}{2!}$ approximates e^{x} to within $\frac{1}{6} \times 10^{-3}$ on the whole interval $(a, 0)$.
13. If $0 \leq b_{n} \leq a_{n}$ for $n=1,2,3, \ldots$, and $\sum_{n=1}^{\infty} a_{n}=100$, prove that $\sum_{n=1}^{\infty} b_{n}$ converges.
14. Sketch and label any 2 level curves for $f(x, y)=x^{2}+y^{2}$.
