Math 1297, Calculus II Lecture Section 8 (Discussion sections 12-15) Test 3 Practice Problems answers

- 1. see p. 239
- 2. $s_n \to 10$ where $s_n = a_1 + a_2 + ... + a_n$.
- 3. (a) Converges (absolutely); p-series with p = 3/2.
 - (b) Converges conditionally; Alternating series theorem; p-series with p = 1/2.
 - (c) Converges (absolutely); limit comparison test with $\sum \frac{1}{n^2}$
 - (d) Converges (absolutely); ratio test: $\frac{|a_{n+1}|}{|a_n|} \rightarrow 1/e < 1$
- 4. No conclusion.
- 5. (a) $(-\infty, \infty)$ (Use ratio test.) (b) $[-\frac{2}{2}, 0)$
- 6. (a) $a_n = \frac{1}{4} (\frac{x}{4})^n$; r=4. (b) $3 + x + \frac{x^5}{5} + \frac{x^9}{9} + \dots$ $(a_n = \frac{x^{4n-3}}{4n-3}$ for $n \ge 1$); r = 1 (same radius as the series before integration: $|x^4| < 1$, or do the ratio test)

7.
$$1 - 1(x - 1) + (x - 1)^2 - (x - 1)^3$$

- 8. (a) 10
 - (b) 0
- 9. (a) True. Justification: x=3 is closer to the point of expansion (x=2) than is x=0. Further explanation but more than is required for the "brief explanation": If a power series converges at any value, it must converge for any value closer to the point of expansion.
 - (b) False; one counterexample is $a_n = \frac{1}{n^2}, b_n = \frac{1}{n}$
- 10. $1+2x+2x^2+\frac{4}{3}x^3+\frac{2}{3}x^4+...$ (The first FIVE power series coefficients are 1, 2, 2, 4/3, 2/3).
- 11. N > 99 (Use the alternating series error bound: the error is less than the size of the first omitted term.)
- 12. a = -.1 ("M" in the Taylor remainder formula for $R_n(x)$ is the max of the third derivative of e^x for x between a and 0. Note that a is negative. Since e^x is increasing, its max is at the right hand endpoint, zero. The value of the max is $e^0 = 1$.)
- 13. See p. 767, part i
- 14. Lots of possibilities. The easiest two are perhaps the two circles centered at the origin and of radius 1 (level 1), and 2 (level 4).