Math 1297, Calculus II

Lecture Section 8 (Discussion sections 12-15)
Test 3 Practice Problems answers

1. see p. 239
2. $s_{n} \rightarrow 10$ where $s_{n}=a_{1}+a_{2}+\ldots+a_{n}$.
3. (a) Converges (absolutely); p-series with $p=3 / 2$.
(b) Converges conditionally; Alternating series theorem; p -series with $p=1 / 2$.
(c) Converges (absolutely); limit comparison test with $\sum \frac{1}{n^{2}}$
(d) Converges (absolutely); ratio test: $\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} \rightarrow 1 / e<1$
4. No conclusion.
5. (a) $(-\infty, \infty)$ (Use ratio test.)
(b) $\left[-\frac{2}{3}, 0\right)$
6. (a) $a_{n}=\frac{1}{4}\left(\frac{x}{4}\right)^{n} ; \mathrm{r}=4$.
(b) $3+x+\frac{x^{5}}{5}+\frac{x^{9}}{9}+\ldots\left(a_{n}=\frac{x^{4 n-3}}{4 n-3}\right.$ for $\left.n \geq 1\right) ; r=1$ (same radius as the series before integration: $\left|x^{4}\right|<1$, or do the ratio test)
7. $1-1(x-1)+(x-1)^{2}-(x-1)^{3}$
8. (a) 10
(b) 0
9. (a) True. Justification: $x=3$ is closer to the point of expansion $(x=2)$ than is $x=0$.

Further explanation but more than is required for the "brief explanation": If a power series converges at any value, it must converge for any value closer to the point of expansion.
(b) False; one counterexample is $a_{n}=\frac{1}{n^{2}}, b_{n}=\frac{1}{n}$
10. $1+2 x+2 x^{2}+\frac{4}{3} x^{3}+\frac{2}{3} x^{4}+\ldots$ (The first FIVE power series coefficients are $1,2,2,4 / 3,2 / 3$).
11. $N>99$ (Use the alternating series error bound: the error is less than the size of the first omitted term.)
12. $a=-.1$ ("M" in the Taylor remainder formula for $R_{n}(x)$ is the max of the third derivative of e^{x} for x between a and 0 . Note that a is negative. Since e^{x} is increasing, its max is at the right hand endpoint, zero. The value of the \max is $e^{0}=1$.)
13. See p. 767, part i
14. Lots of possibilities. The easiest two are perhaps the two circles centered at the origin and of radius 1 (level 1), and 2 (level 4).

