1. (a) converges absolutely (since $\sum \frac{1}{n^{2}}$ converges)
(b) diverges by nth term test since $a_{n} \rightarrow \frac{1}{2} \neq 0$
(c) conveges absolutely by limit comparison test with $\frac{1}{n^{2}}$
(d) converges absolutely by root test $\left(\left|a_{n}\right|^{\frac{1}{n}}=\frac{2}{n} \rightarrow 0<1\right)$. Ratio test also works, but with more effort.
(e) Converges absolutely by ratio test: $\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{e}{n+1} \rightarrow 0<1$.
2. (a) 0 (the individual terms must go to zero for any series that converges)
(b) 10 (the series converging to 10 means by definition that $s_{n} \rightarrow 10 . s_{n+1}$ has the same limit as s_{n}, so s_{n+1} must also converge to 10 .
3. (b). (Check the trace at $y=0-$ or lots of other ways.)
4. (a) True. (The point of is expansion is -2 , not 2.)
(b) True. Absolute convergenc does imply convergence.
(c) False. The ratio test always fails for p-series.
5. $f^{\prime}(x)=\frac{1}{2}+\frac{2 x}{3}+\frac{3 x^{2}}{4}+\frac{4 x^{3}}{5}+\ldots$
6. $(b) \leq(c) \leq(a)$ (once (c) is correctly written as $\sum_{n=2}^{5} \frac{1}{n}$)
7. (a) $(-1,1]$ (Use ratio test.)
(b) $(-\infty, \infty)$ (Use ratio test.)
8. See proof on p. 767 i
9. $\sum_{n=1}^{\infty} \frac{x^{n+1} 3^{n-1}}{10^{n}}$ (other equivalent correct answers)
10. $T_{3}(x)=3+\frac{1}{6}(x-9)-\frac{1}{216}(x-9)^{2}+\frac{1}{3888}(x-9)^{3}$
11. $N \geq 9$ (Need justification, including the that you are using the Alternating Series Test for error: $\left|s-s_{n}\right|<\left|a_{n+1}\right|$.)
12. $\frac{1}{24}$
13. Extra Credit $M=\max \left|f^{\prime \prime \prime}(x)\right|$ for $x \in\left(-\frac{1}{3}, \frac{1}{3}\right)$. Since $f^{\prime \prime \prime}(x)=\frac{2}{(x+1)^{3}}$ is decreasing, its max is at its lefthand endpoint, $x=-\frac{1}{3}$, and $f^{\prime \prime \prime}\left(-\frac{1}{3}\right)=\frac{27}{4}$.
