Practice problems for the Final Exam from Sections 15.2.

1. Let $f(x, y)=\frac{2 x^{2}+3 y^{2}}{x^{2}+y^{2}}$. Compute $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ along the following paths:
(a) the positive x -axis
(b) the negative y-axis
(c) along any line $y=m x$

What can you conclude about $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$?
2. Let $f(x, y)=\frac{x^{2} y}{x^{4}+y^{2}}$. Compute $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ along the following paths:
(a) along any line $y=m x$
(b) along the parabolas $y=c x^{2}$

What can you conclude about $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$?

Answers:

1. (a) 2 (In fact, $f(x, 0)=2$ for any x.)
(b) 3
(c) $\frac{2+3 m^{2}}{1+m^{2}}$

The limit does not exist. (As soon as limits along any two paths are not equal, the limit cannot exist. So parts a and b are enough to conclude the limit does not exist.)
2. (a) zero, no matter what m is (Replace y with $m x$, divide numerator and denominator by x^{2}, and take the limit as $x \rightarrow 0$.)
(b) $\frac{c}{1+c^{2}}$ (Replace y with $c x^{2}$, cancel x^{4}. No x 's remain, so f is "constant along parabolas.") The limit does not exist (even though the limit along any straight line is zero!!!)

