Practice problems for the Final Exam from Sections 15.2.

1. Let
$$f(x,y) = \frac{2x^2 + 3y^2}{x^2 + y^2}$$
. Compute $\lim_{(x,y)\to(0,0)} f(x,y)$ along the following paths:

- (a) the positive x-axis
- (b) the negative y-axis
- (c) along any line y = mx

What can you conclude about $\lim_{(x,y)\to(0,0)} f(x,y)$?

2. Let
$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$
. Compute $\lim_{(x,y)\to(0,0)} f(x,y)$ along the following paths:

- (a) along any line y = mx
- (b) along the parabolas $y = cx^2$

What can you conclude about $\lim_{(x,y)\to(0,0)} f(x,y)$?

Answers:

- 1. (a) 2 (In fact, f(x, 0) = 2 for any x.)
 - (b) 3
 - (c) $\frac{2+3m^2}{1+m^2}$

The limit does not exist. (As soon as limits along any two paths are not equal, the limit cannot exist. So parts a and b are enough to conclude the limit does not exist.)

2. (a) zero, no matter what m is (Replace y with mx, divide numerator and denominator by x^2 , and take the limit as $x \to 0$.)

(b) $\frac{c}{1+c^2}$ (Replace y with cx^2 , cancel x^4 . No x's remain, so f is "constant along parabolas.") The limit does not exist (even though the limit along any straight line is zero!!!)