Math 3280: DE+LA. Practice Test 3 partial answers. Prof. Bruce Peckham

1. $y_{c}(x)=c_{1}+c_{2} x, y_{p}(x)=\frac{x^{2}}{2}$
2. $y_{p}(x)=\frac{1}{4} e^{2 x}$
3. $y(x)=c_{1} e^{4 x}+c_{2} e^{-4 x}+c_{3} x e^{-4 x}+c_{4} \cos (2 x)+c_{5} \sin (2 x)$
4. $D^{2}+9$
5. $y_{p}(t)=A t e^{2 t}$
6. $G(s)=3 \frac{1}{(s-2)^{2}}-\frac{e^{-4 s}}{s}$
7. proof in book, Example 2, Sec. 10.1.
8. $f(t)=3+u(t-3)\left(t^{2}-3\right)+u(t-4)\left(\cos (t)-t^{2}\right)$
9. $y(t)=2 e^{4 t}$
10. $Y(s)=\frac{3 s+3\left(s^{2}+16\right)}{\left(s^{2}+16\right)\left(s^{2}+s+2\right)}$
11. $f(t)=\frac{17}{7} e^{-4 t}+\frac{4}{7} e^{3 t}$
12. Let $v=y^{\prime}$. Then $v^{\prime}=6 v+2 y+\cos (2 t)$. Vector form: $\vec{x}^{\prime}=\left[\begin{array}{ll}0 & 1 \\ 2 & 6\end{array}\right] \vec{x}+\left[\begin{array}{c}0 \\ \cos (2 t)\end{array}\right]$, where $\vec{x}=\left[\begin{array}{l}y \\ v\end{array}\right]$.
13. (a) Need to verify: $A \vec{v}=\lambda \vec{v}:\left[\begin{array}{cc}1 & 2 \\ 2 & -2\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 2\end{array}\right]$, and $2\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 2\end{array}\right]$. These are equal, so it is verified.
(b) $\vec{x}(t)=c_{1} e^{2 t}\left[\begin{array}{l}2 \\ 1\end{array}\right]+c_{2} e^{-3 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]$
(c) $\vec{x}(t)=2 e^{2 t}\left[\begin{array}{l}2 \\ 1\end{array}\right]+1 e^{-3 t}\left[\begin{array}{c}1 \\ -2\end{array}\right]$
14. Eigenvalues/eigenvectors: $-i,\left[\begin{array}{l}i \\ 1\end{array}\right]$, or $i,\left[\begin{array}{c}-i \\ 1\end{array}\right]$ (corrected April 23, 2020)
15. (a) Any one of $(0,0),(2,0)$, or $(1,1)$
(b) Vector from $(2,1)$ is $(-2,1)$; vector from $(1,1 / 2)$ is $(1 / 2,0)$
16. (Extra Credit) This is Theorem 1 in Sec. 10.2. The proof is in the book following Theorem 1.
