Math 3280: DE+LA. Practice Test 3 partial answers. Prof. Bruce Peckham

1.
$$y_c(x) = c_1 + c_2 x, y_p(x) = \frac{x^2}{2}$$

2. $y_p(x) = \frac{1}{4}e^{2x}$
3. $y(x) = c_1e^{4x} + c_2e^{-4x} + c_3xe^{-4x} + c_4\cos(2x) + c_5\sin(2x)$
4. $D^2 + 9$
5. $y_p(t) = Ate^{2t}$
6. $G(s) = 3\frac{1}{(s-2)^2} - \frac{e^{-4s}}{s}$
7. proof in book, Example 2, Sec. 10.1.
8. $f(t) = 3 + u(t-3)(t^2 - 3) + u(t-4)(\cos(t) - t^2)$
9. $y(t) = 2e^{4t}$
10. $Y(s) = \frac{3s+3(s^2+16)}{(s^2+16)(s^2+s+2)}$
11. $f(t) = \frac{17}{7}e^{-4t} + \frac{4}{7}e^{3t}$
12. Let $v = y'$. Then $v' = 6v + 2y + \cos(2t)$. Vector form: $\vec{x}' = \begin{bmatrix} 0 & 1 \\ 2 & 6 \end{bmatrix} \vec{x} + \begin{bmatrix} 0 \\ \cos(2t) \end{bmatrix}$, wh

12. Let
$$v = y'$$
. Then $v' = 6v + 2y + \cos(2t)$. Vector form: $\vec{x}' = \begin{bmatrix} 0 & 1 \\ 2 & 6 \end{bmatrix} \vec{x} + \begin{bmatrix} 0 \\ \cos(2t) \end{bmatrix}$, where $\vec{x} = \begin{bmatrix} y \\ v \end{bmatrix}$.

13. (a) Need to verify: $A\vec{v} = \lambda\vec{v}$: $\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$, and $2\begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. These are equal, so it is verified.

(b)
$$\vec{x}(t) = c_1 e^{2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 e^{-3t} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

(c) $\vec{x}(t) = 2e^{2t} \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 1e^{-3t} \begin{bmatrix} 1 \\ -2 \end{bmatrix}$

14. Eigenvalues/eigenvectors: $-i, \begin{bmatrix} i \\ 1 \end{bmatrix}$, or $i, \begin{bmatrix} -i \\ 1 \end{bmatrix}$ (corrected April 23, 2020)

- (a) Any one of (0,0), (2,0), or (1,1)
 (b) Vector from (2,1) is (-2,1); vector from (1,1/2) is (1/2,0)
- 16. (Extra Credit) This is Theorem 1 in Sec. 10.2. The proof is in the book following Theorem 1.