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Dynamical Systems: The study of systems which evolve in time.

1. Continuous time (differential equations): ẋ = fc(x), x ∈ <n, c ∈ <k.

2. Discrete time (maps): xn+1 = fc(xn), x ∈ <n or Cn, c ∈ <k or Cn.

General Goal: Short version:

1. Compute explicit general solutions when possible (usually only for
linear, or certain 1D DE’s).

2. For individual dynamical systems, determine qualitative features of
solutions (phase portraits). Focus on limiting behavior (α- and ω-
limit sets) and how this limiting behavior depends on initial conditions.

3. For families of dynamical systems, divide the parameter space up into
equivalence classes. Determine when and how these qualitative features
change as parameters are varied to go from one equivalence class to
another (bifurcation).

4. Recognize indicators of chaos.

5. Know simplest examples of chaos in various settings.

Long version:

1. Compute explicit general solutions solutions in terms of time (t or
n) and initial conditions (x0) for linear systems: ẋ = Ax has general
solution x(t) = eAtx0; xn+1 = Axn has general solution xn = Anx0.
This is most easily done for certain canaonical matrices. In 2D, these
canonical matrices are diagonal (distinct real eigenvalues), “a,−b, b, a”
(complex eigenvalues a± ib), and “λ, 1, 0, λ” (repeated real eigenvalues
of λ). Use polar coordinates for the complex case.

2. For individual (nonlinear) dynamical systems, determine qualitative
features of solutions (phase portraits).

(a) 1D DE’s: Locate equilibria, determine arrows for stability using,
for example, plot of ẋ versus x. All solutions are monotonic. Nei-
ther periodic orbits nor chaos is possible.
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(b) 2D DE’s: Locate equilibria, linearize to determine stability, deter-
mine stable and unstable manifolds of all saddles, look for or rule
out periodic orbits (Index theory, Poincare-Bendixon Theorem,
gradient systems, ...), Sketch phase portrait, possibly using phase
plane software, nullclines, ... . Chaos is not possible (Poincare-
Bendixon Theorem).

(c) 3D DE’s: Same as 2D DE’s, but use 3D software to view. Poincare-
Bendixon does not apply, so chaos on strange attractors is
possible. Lorenz attractor.

(d) 1D maps:

i. orientation preserving homeomorphisms: Locate fixed points,
determine arrows for stability. Neither periodic solutions (other
than fixed points) nor chaos is possible. (same as for 1D DE’s)

ii. orientation reversing homeomorphisms: second iterete is ori-
entation preserving. Fixed points of the second iterate can be
period-two points of the original map.

iii. Non homeomorphisms, eg. quadratic. Analytically locate
fixed points, period-two points, period-three points, ... . De-
termine stability (chain rule). Look for invariant sets (eg.
intervals, Cantor sets). Chaos is possible. (x 7→ x2 + c for
certain c values.)

iv. More complicated non homeomorphisms: higher degree poly-
nomials, rational functions (Newton’s method), transcenden-
tal functions. Same as for quadratic maps, but more to keep
track of.

(e) 2D maps:

i. Homeomorphisms: Locate fixed points, linearize to determine
stability, determine stable and unstable manifolds of all sad-
dles, look for or rule out periodic orbits. Use software to
iterate. Chaos is possible. (Henon map.)

ii. Noninvertible: Start with ideas for homeomorphisms, but
much more ... . Current area of research.

iii. Complex 1D: Locate attracting periodic orbit(s) and their
basin boundaries: Filled Julia sets (bounded orbits) and Julia
sets (Chaos).

(f) 3D maps: ... ???????? Current area of research.
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3. For families of dynamical systems, divide the parameter space up into
equivalence classes. Determine when and how these qualitative features
change as parameters are varied to go from one equivalence class to
another (bifurcation).

(a) 1D DE’s with k parameters

• k = 1: Sketch equilibrium set in phase × parameter space.
Determine regions of ẋ positive vs. negative. Locate bifurca-
tion points by inspection or by fc(x) = 0, f ′

c(x) = 0. Deter-
mine stablility of equilibria (make equilibria solid or dashed
curves). Add phase lines for each equivalence class. Classify
bifurcations. as saddle-node (tangent), transcritical, pitch-
fork, or other.

• k = 2: Either try to sketch the surface(s) of equilibria in the
three-dimensional phase × parameter space and proceed as
for k = 1, or divide parameter plane into equivalence classes
using curves defined by fc(x) = 0, f ′

c(x) = 0 and eliminating
x (projecting to the parameter plane). Add phase lines for
each equivalence class. Classify bifurcations: codimension-
one curves (same as bifurcation points for 1D), codimension-
two points (lots of complicated bifurcations) One parameter
cuts are sometimes useful (fix one parameter and treat as a
one-parameter family).

• k > 2: No obvious strategy which works best in all situations.
Do calculations as much as possible with all parameters to-
gether. If difficulties arise, fix some parameters, ... , ?

(b) 2D DE’s with k parameters.

• k = 1: Sketch bifurcation diagrams in 3D, or project to 2D.
For, example, sketch the x1 coordinate OR the x2 coordinate
of equilibria as a function of the parameter, whichever one
seems to display more information. Or show both. Or, divide
parameter line into equivalence classes using points defined
by fc(x) = 0, det(Dfc(x)) = 0 (eigenvalue of zero — usually
saddle-node), or fc(x) = 0, trace(Dfc(x)) = 0, det(Dfc(x)) >
0 (pure imaginary eigenvalues — usually Hopf). Use phase
plane software to help determine phase portraits for each
equivalence class. Determine global bifurcations (not always
so easy): saddle connections, saddle-node of limit cycles, ....
Note that periodic orbits can be born in Hopf bifurcations
and in saddle-connection bifurcations. This could involve ex-
tensive use of phase plane software, as well as Mathematica,
Maple, .... Include phase portraits for each equivalence class.
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• k = 2: Divide parameter plane into equivalence classes. The
same sets of equations as for k = 1 now give curves of saddle-
node bifurcations (eigenvalue of zero), curves of Hopf bifurca-
tions (pure imaginary eigenvalues), curves of saddle-connections,
... . Be especially careful near where any two such curves in-
tersect. Include phase portraits for each equivalence class.
One parameter cuts are sometimes useful.

• k > 2: Good luck.

(c) Maps. Similar strategy to DE’s. Just harder to divide into equiv-
alence classes. Remember that for DE’s stablilty is determined by
whether eigenvalues are in the right or left-half plane, but stabil-
ity for maps is determined by whether eigenvalues are inside or
outside the unit circle. For example, a saddle-node requires an
eigenvalue of one, period doubling an eigenvalue of negative one,
and Hopf a pair of complex eigenvalues on the unit circle.

4. Recognize indicators of chaos:

(a) 3D DE: Strange attractors (Lorenz attractor). Non point, non
limit cycle attractor.

(b) 1D map: Wild cobweb orbit; graph pushed through “square” im-
plies invariant Cantor set (x2 + c for c < −2); filled out interval
on orbit diagram (x2− 2, doubling map, tent map, V map); orbit
diagram like quadratic map or logistic map.

(c) 1D complex map: Julia sets, Mandelbrot set

(d) 2D map: Homoclinic tangles, horseshoes

(e) Most cases: stretching (orbits separate, SIC) and folding (orbits
can come back together, allowing periodic orbits and transitive
orbits)

5. Know simplest examples of chaos in various settings.

(a) 3D differential equations: Lorenz equations with Lorenz attractor

(ẋ, ẏ, ż) = (σ(y − x), rx− y − xz, xy − bz)

Classic parameters: (σ, b, r) = (10, 8/3, 28).

(b) 1D noninvertible maps: Qc(x) = x2 + c

(c) 1 complex dimension noninvertible maps: Qc(z) = z2 + c

(d) 2D invertible maps: Henon map with Henon attractor

(x, y)→ (1− ax2 + y, bx)

Classic parameters: (a, b) = (1.4, 0.3)
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