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Abstract

M.C. Escher consideredircle Limit Ill to be the most successful of his four “Circle Limit” patterfisvo artistic or
mathematical questions have been raised: (1) what angledetite backbone lines make with the bounding circle,
and (2) are other such patterns of fish possible? H.S.M. @opetvided an exact expression to the answer the first
guestion, and a 3-parameter family of possible fish patteasdescribed in Dunham’s 2006 Bridges Conference
paper. Dunham’s 2007 Bridges Conference paper providegieesee of calculations that determine the intersection
angle for any pattern of that family. In this paper, we dedveingle expression for that angle, which agrees with
Coxeter’s expression for the special cas€otle Limit Il.

1. Introduction

We recall M.C. Escher’s hyperbolic patte@ircle Limit IIl by showing a computer rendition of it in Figure 1.
Figure 2 shows a pattern of angular fish from the familZotle Limit Il patterns, with four fish meeting at
at both left and right fin tips. Dunham’s 2006 Bridges pap#otiuced the concept of a 3-parameter family

Figure 1: A rendition of Escher'<Circle Limit Ill, a Figure 2: A (4,4,3) pattern of angular fish from the
(4,3,3) pattern. Circle Limit Il family.

of Circle Limit Il patterns indexed by the numbers;, andr of fish meeting at right fin tips, left fin tips,
and noses respectively [5]. Such a pattern was denoted hyighe2(p, ¢, ). ThusCircle Limit Ill and the



pattern of Figure 2 would be calléd, 3, 3) and(4, 4, 3) respectively. Following Escher’s lead, we required
r be odd so that the fish swim head-to-tail, to create the “trédliiw”’ Escher desired (though the results
below also hold ifr is even and the fish “kiss”). Alsp andq should be greater than or equal3téin order
that the fin regions define a single common point. Finallyhmdtyle ofCircle Limit Ill, we place right fin
tips at the center of the bounding circle.

This paper is the culmination of a series of interactionsvbet art and mathematics. This began in
early 1958 when the mathematician H.S.M. Coxeter sent Escheprint of one of Coxeter’s papers that
showed a triangle tessellation in the Poincaré circle motléhe hyperbolic plane [2]. This tessellation
inspired Escher to create his “Circle Limit” patterns. ltur@, Escher sent Coxeter copies of those patterns.
The printCircle Limit IIl later inspired Coxeter to write two papers on the geometthebackbone lines
in that pattern [3, 4]. In the issue @he Mathematical Intelligencazontaining Coxeter’s second paper, an
anonymous editor wrote the following caption for the coverich showedCircle Limit III:

Coxeter’s enthusiasm for the gift M.C. Escher gave him, atgf Circle Limit Ill, is under-
standable. So is his continuing curiosity. See the artiotepp. 35-46. He has not, however
said of what general theory this pattern is a special caseadiget. [1]

We are unaware if Coxeter never described such a generalihma that caption was the inspiration for
Dunham to describe an entire family of artisBiacle Limit Ill patterns in [5]. Following Coxeter's example,
Dunham presented a sequence of calculations that compgéatérsection angle between the bounding
circle and a backbone line of a genefal ¢, ) pattern [6]. However, that result was less than satisfgctor
since it did not produce a single expressiondors Coxeter’s papers did f@ircle Limit I11.

In this paper we find such an expression, which has two adyasidl) it generalizes Coxeter’'s expres-
sion,cos(w) = (2i - 2*i)/2 and (2) it can be seen to be antisymmetrig Bndq, a fact that is not evident
in the calculations of [6]. We note that these patterns agalae when interpreted in terms of hyperbolic
geometry, so all backbone lines of a pattern make the sante @aith the bounding circle and there is only
one angle to determine for any particular pattern.

For background we first review some hyperbolic geometry uisdtie calculations. Then we give a
derivation of the expression feps(w) using hyperbolic trigonometry, as Coxeter did in his firgbga[3].
Finally, we review the results and indicate directions offfar research.

2. The Poinca® Disk Model of Hyperbolic Geometry

Escher’s “Circle Limit” patterns can be interpreted as edjpey patterns of the hyperbolic plane. The hy-
perbolic plane is a surface of constant negative (Gaussiawature. The entire hyperbolic plane has no
smooth, isometric (distance preserving) embedding inilleah 3-space as was proved by David Hilbert in
1901 [8]. Thus, we must rely on Euclideamodelsof hyperbolic geometry in which distance is measured
differently and concepts such as hyperbolic lines havepntations as Euclidean constructs.

We will be using the Poincaré disk model of hyperbolic gettyneas Escher did in his “Circle Limit”
patterns. In thé’oincae disk modethe points are just the (Euclidean) points within a Euclidbaunding
circle, which we will take to be the unit circle in they-plane for computational convenience. Hyperbolic
lines are represented by circular arcs orthogonal to thediag circle (including diameters). For example,
the backbone lines lie along hyperbolic lines in Figure 2.e Tisk model isconformal the hyperbolic
measure of an angle is the same as its Euclidean measureughédan measure of the angle between two
circular arcs is the measure of the angle between their tasmgéthe point of intersection; the angle between
circular arc and a line segment is formed by the line segmmahttze tangent to the arc). As a consequence,
all fish in a “Circle Limit 1lI” pattern have roughly the sameu8lidean shape. However equal hyperbolic
distances correspond to ever smaller Euclidean distaneesd the edge of the disk. So all the fish are the



same (hyperbolic) size in@ircle Limit Il pattern. The Poincaré disk model appealed to Escher (asd ha
appealed to other artists) since an infinitely repeatintgpatcould be shown in a bounded area and shapes
remained recognizable even for small copies of the mot#, tduconformality.

On first glance, it is tempting to guess that the backbone @fr&rcle Limit Il are hyperbolic lines.
Indeed, Escher seemed to think so — in a letter to Coxeter beewr.. As all these strings of fish shoot
up like rockets from infinitely far awayerpendicularlyfemphasis ours] from the boundary, and fall back
again whence they came, not one single component ever etoheedge. ...” [3]. However, a careful
measurement of the backbone arcs of the fis@ingle Limit Ill shows that they make an angle of about
80° with the bounding circle. These arcs are so-cadigdidistant curve hyperbolic geometry: curves
at a constant hyperbolic distance from the hyperbolic lifth #he same endpoints on the bounding circle,
and Escher accurately drew them as such. For every hypedbwi and a given distance, there are two
equidistant curves, calldaranchesat that distance from the line, one each side of the linehérPtoincaré
disk model, those two branches are represented by circulamaaking the same (non-right) angle with the
bounding circle on either side of the corresponding hypdertime. Escher used only one branch for fish
backbones from each pair of equidistant curve€intle Limit I11.

3. The Calculation of w

For the derivation of a formula far, we generalize Coxeter’s method that used hyperbolicriogtetry, as
given in [3], but also appeal to the Euclidean represemadidiyperbolic objects when needed. We start by
noting that in the generap, ¢, ) case, we can take the fundamental region to be a quadrilatinavertex
angles2r /p, w/r, 27 /q, andx /r. Such quadrilateral with a pair of congruent opposite anglesometime
called akite. So each(p, ¢,r) pattern has an associated kite tessellation, the patterteasellation being
hyperbolic whenl /p + 1/q + 1/r < 1. Figure 3 below shows how th@ircle Limit Il pattern is related to
its kite tessellation.

For the derivation of the formula fav we start by assuming that < ¢ (unlike Circle Limit 1ll), and
show that case in Figure 4 — specifically the kite tessehafi a (4, 8, 3) pattern. We will indicate below
why the derivation also works fgr > ¢. Of course ifp = ¢, the backbone lines are hyperbolic lines and
w = 90°, an example of which is thet, 4, 3) pattern of Figure 2.

In Figure 4, the kite to the right of center is labelB®Q R’, with the p-fold point P at the origin, the
q-fold point @Q on the positiver-axis, and the2r-fold points R and R’ above and below the-axis. The
z-axis is an the axis of symmetry 6fRQR’, and of the entire kite tessellation. Another axis of reftect
symmetry of the kite tessellation is the hyperbolic limethrough R and perpendicular to the hyperbolic
bisector of the angle PRQ (in the Euclidean terms of the Poincaré model, the tangenhé circular
arc representingn is perpendicular to the bisector of the angle formedRi¥y and the tangent to the arc
representing?@). In Figure 4,RQ’ forms part ofm.

Next, in the Poincaré model, consider the Euclidean arcatc through? and R’ that bisects (in the
Euclidean sense)PRQ at R and/PR’'Q at R'. This arc is determined by requiring it pass througland
R/, and be tangent to the Euclidean bisector 6fR() (and thus it also tangent to the bisector/d? RQ by
symmetry across the-axis). This circular arc can be extended by reflection acrossince the tangent to
the arc matches the tangent of its reflectioi®atn fact the arc can be extended both directions to a circular
arcb within the Poincaré disc. In @, g, r) fish pattern, the artis the backbone arc we wish to analyze.

We now show that the hyperbolic linkassociated to lies to the left ofb and to the right ofP, and
thus intersects the segmeRiR betweenP and R at M, as shown in Figure 4. Note thatis symmetric
across ther-axis by its definition, and therefore sods First, we show that withi’ RQR/, b lies to the
right of the hyperbolic ling determined byR R’ and thus to the left of outside of PRQR’. Also, sincet is
determined by and R’, as a Euclidean circular arc, its endpoints on the bounditgdie to the right of
the vertical chord througlk (andR’). LetT be the intersection @gfand P, so by symmetry makes a right



angle with PQ. Then by one of the formulas for hyperbolic right trianglés page 403], applied t&® RT
andQRT, cos(m/p)/sin(LPRT) = cosh(RT') = cos(m/q)/sin(LQRT), sosin(LPRT) < sin(LQRT)
sinceq > p, and thus/ PRT < /QRT, showing thab lies to the right oft inside PRQR’'. The tangent
to b at R makes an angle d;j- + 5 with the z-axis. The largest this angle can bejisvhich occurs when
p = r = 3, so that the Euclidean-coordinate of a point ohaboveR (or belowR’) is greater than or equal
to thez-coordinate ofR. Thus the endpoints dfon the bounding circle lie between the endpoints afd
the endpoints of the vertical chord through Since the endpoints éfare to the right of the vertical chord
(andb is symmetric across the-axis), ¢ must stay to the right of thg-axis. Also, as shown above, as an
equidistant curveé “bulges” to the right (since it is to the right ofinside PRQR') — that is it is turning
to the left as we traverse it from bottom to top. Thhis,associated hyperbolic line (the orthogonal circular
arc in the Poincaré model with the same endpoiat®s to the left of it in Figure 4, and hendantersects
PR as claimed.

Finally, the pointsL, M, and N are determined as followg: is the intersection of and PQ, M is the
intersection o and PR, andN is the foot of the perpendicular froi to ¢.

For the case op > ¢, we apply transformations to reduce that case tgpthe ¢ case (by relabeling).
First hyperbolically slide the kite tessellation shown iigute 4 to the left along the-axis, putting the
transformed( at the origin. Then reflect across theaxis to obtain the configuration of Figure 4 with
P and(@ interchanged (and the roles piandq will be interchanged too). As in the previous argument,
intersects the segment betweltand the the transformed at the origin at the point/. Thus the following
derivation also applies to the case> ¢ if we interchangeP and@, andp andq in the calculations.
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Figure 3: The Circle Limit lll pattern with its kite Figure 4: The diagram for the hyperbolic trigonom-
tessellation superimposed. etry calculation ofv.

Our goal is to compute the angle of intersectiobetweerb and the bounding circle. By a well-known
formula [7, page 402} is given by:
cos(w) = tanh(RN)

SinceRN M is aright triangle, by one of the formulas for hyperbolidhitriangles [7, page 403janh(RN)
is related totanh(RM) by: tanh(RN) = cos(/NRM)tanh(RM). But /NRM = 5 — 5 since the
equidistant curve bisectsPR(Q) = 7 (in the Euclidean sense by construction and thus in the bytier



sense by conformality of the Poincaré model). Tho /N RM) = cos(§ — 5-) = sin(g) and
tanh(RN) = 5111(2 ) tanh(RM) 1)

so that our task is reduced to calculatiagth( RM ).
In order to calculateanh(R M ), we note that as hyperbolic distand@® = RM + M P, so eliminating
M P from this equation will relat&R M to RP, which we can find. By the subtraction formula tarsh, we
havecosh(M P) = cosh(RP — RM) = cosh(RP) cosh(RM) — sinh(RP) sinh(RM ). Dividing through
by cosh(RM) gives:
cosh(MP)
cosh(RM)

Also, another formula (Formula (11), page 403 of [7]) for &gmlic right triangles applied t&M L and
RM N gives:

= cosh(RP) — sinh(RP) tanh(RM) 2

cosh(MP) = cot(/PML)cot(3) and
cosh(RM) = cot(LRMN) cot(5 — 5-)

2r

Now as opposite angleg,PM L = /RM N, so dividing the first equation by the second gives:

cosh(M P)

cosh(RM) o) ®)

s
= cot(— ) cot
() cot(5,

Equating the right sides of (2) and (3) givessh(RP) — sinh(RP) tanh(RM) = cot(7) cot(g;), which
can be solved fotanh(RM) in terms of RP:

cosh(RP) — cot (%) cot(g;)

tanh(RM) = sinh(RP)

(4)

Thus we have reduced the problem to findiogh (R P) andsinh(RP). One of the hyperbolic laws of
cosines [7, page 406] applied @R gives: cosh(RP) = (cos() cos(T) + cos(%))/ sin(F) sin(T). We
can calculateinh(RP) from this by the formulainh? = cosh? —1. Substituting these values @fsh(RP)

andsinh(RP) into equation (4), and inserting that result into equatibngives the final result:

sin(g;) (cos() — cos(%))
\/cos(p) + cos(7)? + cos(7)? + 2 cos(7) cos() cos(T) — 1

cos(w) =

which is antisymmetric ip andg, as we would expect. For unrestrictedndq we should replace the factor
(cos(%) - cos(%)) by its absolute value.
Letting ¢ = » = 3 and doing some algebraic manipulation yields the same flargiven in [5] for that
special case:
1 3
cos(w) =—=,/1 — ——5—=
() 2 4 cos?(z;)
This expression further reduces to Coxeter’s expressiothé&Circle Limit Il case whemp = 4.
Some algebraic manipulation also yields a formulacfar(w):

tan(g- )(cos(q) —cos( )

)
\/(cos( ) + cos(% ))? +2cos(X) — 2

cot(w) =

Again, we should replace the fact@ros(g) - cos(%)) by its absolute value if > q.



4. Conclusions and Future Work

For any p, q,r) pattern, we have given a formula for the anglen equidistant “backbone” curve makes
with the bounding circle. This formula agrees with previgusbtained results by Coxeter in ti@ircle
Limit Ill, (4,3,3) case, and by Dunham in the cpse r = 3.

However, there is still work to be done. In order to generae patterns in this family of patterns,
it would also be useful to be able to transform opeg(r) pattern to another one with different values of
p,q, andr. A seemingly difficult problem is to automate the processabbiing a p, ¢, r) pattern so that it
has the same color along any line of fish and adheres to thecolapng principle that adjacent fish have
different colors. Currently we determine colorings “by dgrand although it may be possible to program
symmetric colorings of any repeating pattern, the requénenthat fish along a backbone line be the same
color adds an extra degree of difficulty to coloring ¢, ) patterns.
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