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Abstract

This paper discusses repeating patterns on infinite skeyh@dta, which are triply periodic polyhedra. We exhibit
patterns on each of the three regular skew polyhedra. Thetserps are each related to corresponding repeating
patterns in the hyperbolic plane. This correspondencebeibxplained in the paper.

1. Introduction

A number of people, including M.C. Escher, created convéyhmulra with patterns on them. Later, in 1977
Doris Schattschneider and Wallace Walker designed nowesorings of polyhedra, called Kaleidocycles,
that could be rotated, which are described in [Sch05]. Tra gbthis paper is to start an investigation of

repeating patterns on infinite skew polyhedra — i.e. trigdyigdic polyhedra. Figure 1 shows a finite piece
of such a pattern.
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Figure 1: A pattern of fish on the tessellatidi6, 63} .

We begin with a discussion of infinite skew polyhedra and show they are related to tessellations of
the hyperbolic plane. This relationship can also be apptiedpeating patterns on those respective surfaces.

Then we present patterns on each of the three regular trgplgglic polyhedra. Finally, we indicate possible
directions of further investigation.



2. Patterns, Hyperbolic Geometry, and Infinite Skew Polyhech.

A repeating patterris a pattern made up of congruent copies of a basic subpattenotif There can be
repeating patterns on the Euclidean plane, hyperboliceplsphere, and polyhedra. For hyperbolic geom-
etry, we use th&oincai€ diskmodel whose points are represented by Euclidean pointsnwatbounding
circle. Hyperbolic lines are represented by (Euclideargutar arcs orthogonal to the bounding circle (in-
cluding diameters). This model distorts distances in suslaathat equal hyperbolic distances correspond
to ever-smaller Euclidean distances as figures approaddtye of the disk.

A regular tessellatioris a special kind of repeating pattern on the Euclidean pldresphere, or the
hyperbolic plane. It is formed by regularsided polygons op-gons withg of them meeting at each vertex,
and is denoted by the Schlafli symHgl, ¢}. If (p —2)(q —2) > 4, the tessellation is hyperbolic, otherwise
it is Euclidean or spherical. Figure 2 shows the regular Hyplee tessellation 4,6}, and

Figure 2: The{4,6} tessellation.

An infinite skew polyhedrofin Euclidean 3-space) has regular polygon faces, a namaplaertex figure,
and repeats infinitely in three independent directions [¥}ikSuch polyhedra have been callegperbolic
tessellationssince they have negative angle defects at their verticésydualon't use this designation since
it conflicts with our definition above. (They have also beemeadpolyhedral spongesince they can be
seen to divide space into polyhedral cells.)

Regular skew polyhedrare special cases of infinite skew polyhedra whose symmebiypg are flag-
transitive. There are three of them, as discovered by Jotrie e 1926 [Wikil]. H.S.M. Coxeter used the
modified Schlafli symbo{p, ¢|n} to denote them, indicating that there grg-gons around each vertex and
n-gonal holes [Cox73, Cox99]. Figure 1 above shows a fishpatte{6,6|3}. The other possibilities are
{4,6|4} and{6, 4|4}, which we show below.

A smooth surface hasumiversal covering surfacea simply connected surface with a covering map onto
the original surface. If the original surface is negativelyved, universal covering surface is the hyperbolic
plane. We can extend this idea to regular skew polyhedrahytherbolic tessellatiokp, ¢} is the universal
covering polyhedron fofp, ¢|n}. Since regular skew polyhedra have negative angle defesit, universal
covering polyhedra must be hyperbolic. We also extend theraay idea to repeating patterns on infinite
skew polyhedron.



Infinite skew polyhedra are also related to triply periodinimal surfaces (TPMS), since some TRMS
surfaces are the (unique) minimal surfaces formed from tine-frames (collection of edges) of infinite
skew polyhedra. Alan Schoen has done extensive invesiigainto TPMS [Schoen].

In the next three sections we show examples of patterns ardjudar skew polyhedra and their associ-
ated hyperbolic patterns.

3. A Pattern on the {4, 6|4} Polyhedron

The{4,6/4} polyhedron is the easiest to understand. Itis based ongbelltation of 3-space by cubes. One
way to visualize it is to index the cubes by integers in eacthefthree directions and include only those
with one or three even indices as a solid figure (the complém@ongruent to it). Thé4, 6|4} polyhedron

is the boundary of that solid figure. Escher's “Heaven and”Hbalttern was the only one that he realized
in each of the classical geometries: Euclidean, spherdcal, hyperbolic. So it seems appropriate to also
place such an “angels and devils” pattern on a regular skéyh@dron, the{4, 6|4} polyhedron as shown
in Figure 3.

Figure 3: A pattern of angels and devils on té, 6|4} polyhedron.

Figure 4 shows the corresponding universal covering patiased on thé¢4, 6} tessellation, which is
shown in red. One can see the six hyperbolic “squares” areanH vertex.

4. A Pattern on the {6, 4|4} Polyhedron

The {4,6|4} polyhedron is the dual of thé4, 6|4} polyhedron. The(4,6|4} polyhedron is based on the
Bitruncated cubic space-filling tessellation by truncatethhedra [Wiki3]. If we index rectangular lattice
positions in 3-space as in the previous section, we can plaesset of truncated octahedra at positions of
all even indices, and a complementary set a positions ofidlimdices such that all octahedra are congruent
and fill space. The boundary between these two sets {g thgl} polyhedron. Figure 5 shows another
pattern of angels and devils on that polyhedron, with axesilateral symmetry of the angels and devils
shown in red, blue, and green.

Figure 6 shows the corresponding universal covering pattased on thé6, 4} tessellation. In Figure 6
we have emphasized the bilateral symmetry of the figurestimile families of lines colored red, green, and



Figure 4: A pattern of angels and devils showing the underlyjdg6} tessellation.

Figure 5: A pattern of angels and devils on té, 4|4} polyhedron.



Figure 6: A pattern of angels and devils based on {fie4} tessellation.

blue, such that no two lines of a family intersect. Theseslioerrespond zigzagging polylines in Figure 5,
with the red lines going roughly left-to-right, the bluedimgoing front-to-back, and the green lines oriented
approximately vertically. We could have similarly emplzasi the bilateral symmetry in Figure 3, in which
the axes of bilateral symmetry would be square “loops” adailne cubic arms and holes.

5. A Pattern on the {6, 6|3} Polyhedron

The {6,6|3} polyhedron may be the trickiest to understand. It is formmenftruncated tetrahedra with
the triangular faces removed. Such triangular faces from fauncated tetrahedra are then placed in a
tetrahedral arrangement (around a small invisible tethadrg [Wiki2]. A side view is shown in Figure 1.
Figure 7 shows a “top” view looking down at one of the verti¢efiere six hexagons meet). We placed
a pattern of angular fish on this polyhedron. Figure 8 showstrresponding universal covering pattern
based on th¢6, 6} tessellation.

All the fish along a backbone line in Figure 8 are the same aotdrswim the same direction. No two
backbone lines of the same color intersect. In fact the atias (perfect) 3-color symmetry. The same
comments also apply to the pattern of Figures 1 and 7. In thexgpfacing planes in Figure 1, the red fish
swim lower right to upper left, the blue fish swim lower leftupper right, and the green fish swim toward
the viewer. In fact the backbone lines on f& 6|3} polyhedron are embedded Euclidean lines.

6. Observations and Future Work

We have shown patterns on each of the regular skew polyhledraertainly many more patterns could be
drawn on them. It would also be possible to draw patterns baranfinite but non-regular skew polyhedra.
In creating such patterns, it is desirable to take advardfitiee combinatorics and any underlying geometry



Figure 7: Atop view of a pattern of fish onthe  Figure 8: A pattern of fish based on tH&, 6}
{6,6|3} polyhedron. tessellation.

of the skew polyhedra. This was perhaps best done above hyattern on the(6,6|3} polyhedron. It
would also be nice to similarly take advantage of the embeditees in the{6,4|4} polyhedron, which
could be done if we used the hexagon pattern of fish that wefoséle {6, 6|3} polyhedron. However, the
fish would then alternate directions along a backbone linesummary, there are many more patterns on
skew polyhedra to investigate.
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