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Abstract

M.C. Escher drew a few of his patterns on finite polyhedra, butnot on infinite polyhedra. In this paper we show
some Escher-inspired patterns on triply periodic polyhedra.

1. Introduction

In this paper we show new patterns on triply periodic polyhedra that were inspired by the Dutch artist
M.C. Escher. Triply periodic polyhedra have translation symmetries in three independent directions in
Euclidean 3-space. Figure 1 shows a finite part of such a polyhedron decorated with butterflies. This paper

Figure 1: A piece of the{3, 8} polyhedron decorated with butterlfies.

extends the work shown at Bridges 2012 [1], exhibiting Escher patterns on two new polyhedra.
Each of the polyhedra we discuss is composed of copies of a regular polygon, with more of them around

each vertex than would be possible in the Euclidean plane. These polyhedra thus have negative curvature,
and are related to regular tessellations of the hyperbolic plane. Similarly, the patterns we place on these
polyhedra are related to patterns of the hyperbolic plane that are based on regular tessellations.

Escher drew a few of his patterns on closed polyhedra, which are shown in [3]. Later Doris Schattschnei-
der and Wallace Walker placed Escher patterns on non-convexrings of polyhedra, called Kaleidocycles,
which could be rotated [4]. The purpose of this paper is to extend this concept by placing Escher pattens on
triply periodic polyhedra.



We begin with a review of regular hyperbolic tessellations and triply periodic polyhedra, and the relation
between them, which extends to patterns on the respective surfaces. Then we show Escher patterns on two
polyhedra. Finally, we indicate possibilities for other Escher patterns on triply periodic polyhedra.

2. Regular Tessellations and Triply Periodic Polyhedra

We use the Schläfli symbol{p, q} to denote the regular tessellation formed by regularp-sided polygons or
p-gonswith q of them meeting at each vertex. If(p−2)(q−2) > 4, {p, q} is a tessellation of the hyperbolic
plane (otherwise it is Euclidean or spherical). Figure 2 shows the tessellation{4, 5} in the Poincaré disk
model of hyperbolic geometry. Figure 3 shows that tessellation on top of a pattern of angels and devils.

Figure 2: The{4,5} tessellation Figure 3: The{4, 5} superimposed on a pattern of
angels and devils.

We will be interested in infinite, connectedsemiregular triply periodic polyhedra. Such a polyhedron
has ap-gon for each of its faces,q p-gons around each vertex, translation symmetries in three independent
directions, and symmetry group that is transitive on vertices — i.e. it isuniform. We extend the Schläfli
symbol {p, q} to include these polyhedra (however different polyhdera can have the same{p, q}). The
infinite skew polyhedraare the most symmetric of these polyhedra — like the Platonicsolids their symmetry
groups are transitive on flags (a flag is a vertex-edge-face triple where the vertex is an endpoint of the edge,
which is an edge of the face). Figure 1 shows a piece of a{3, 8} polyhedron with a butterfly pattern on it.
These polyhedra are considered to be hyperbolic since the angle sum at each vertex is greater than2π.

In some cases there is an intermediate “connecting surface”between some regular triply periodic poly-
hedra{p, q} and the corresponding regular tessellations{p, q}. First, these periodic polyhedra are approxi-
mations to triply periodic minimal surfaces (TPMS). Second, each smooth surface has auniversal covering
surface: a simply connected surface with a covering map onto the original surface, which is a sphere, the
Euclidean plane, or the hyperbolic plane. Since each TPMS has negative curvature (except for possible
isolated points), its universal covering surface does too,and thus has the same large-scale geometry as the
hyperbolic plane. In the same vein, we might call a hyperbolic pattern based on the tessellation{p, q} the
“universal covering pattern” for the related pattern on thepolyhedron{p, q}. In the next two sections we
show two patterned polyhedra and their corresponding “covering” patterns in the hyperbolic plane.



3. A Pattern of Angels and Devils on a{4, 5} Polyhedron

Escher only realized one pattern in each of the classical geometries, his “Heaven and Hell” patterns: his
Euclidean Regular Division Drawing 45, a carved sphere withangels and devils, and his hyperbolic pattern
Circle Limit IV, which are based on the{4, 4}, {4, 3}, and{6, 4} tessellations respectively. Figure 3 above
shows a related angels and devils pattern based on the{4, 5} tessellation. The goal of this section is to place
that pattern on a{4, 5} polyhedron also. Figure 4 shows a piece of that polyhedron [2]. It is made up of
cross-shaped units in three orientations, the colors of theunits indicating the orientation. Figure 5 shows
one of the units, which can be thought of as a cube with four equilateral triangular prisms on it.

Figure 4: A piece of a{4, 5} polyhedron. Figure 5: A “construction unit” for the{4, 5} poly-
hedron.

If we think of the{4, 5} polyhedron shown in Figure 4 as bounding a solid, the complementary solid
may be easier to understand. That solid consists of truncated octahedral hubs with their hexagonal faces
connected by regular hexagonal prisms as struts. Consequently, the {4, 5} polyhedron of Figure 4 has
hexagonal holes in the four directions of the body diagonalsof a cube. Figure 6 shows the{4, 5} polyhedron
decorated with angels and devils, with a view down one of the hexagonal holes. Figure 7 shows another view
of that patterned polyhedron, for which the angels and devils of Figure 3 form the corresponding “covering
pattern”.

The patterned{4, 5} polyhedron of Figures 6 and 7 thus fills a “gap” between Escher’s Regular Division
Drawing number 45 based on{4, 4} and the patterned{4, 6} polyhedron in Figure 3 of [1].

4. A Pattern of Butterflies on a{3, 8} Polyhedron

The inspiration for Figure 1 is Escher’s Regular Division Drawing number 70, shown in Figure 8. It can
be thought of as being composed of triads of butterflies, one of each color meeting at right rear wings, and
is thus based on the Euclidean{3, 6} tessellation. Two colors of butterflies meet at left front wing tips and
those butterflies are decorated with wing spots of the third color. Figure 9 shows a hyperbolic butterfly
pattern that is based on the{3, 8} tessellation and follows Escher’s coloring rules. It is this pattern that we
have “wrapped around” a{3, 8} polyhedron.



Figure 6: A view down a hexagonal hole of the
{4, 5} polyhedron decorated with angels and devils.

Figure 7: Another view of the{4, 5} polyhedron
decorated with angels and devils.

As with the{4, 5} polyhedron of Section 3, our{3, 8} polyhedron can also be described in terms of hubs
and struts, both of which are regular octahedra. A hub octahedron has strut octahedra on alternate faces, so
that four hub triangles are covered by struts and four remainexposed. Each strut octahedron connects two
hubs, and thus has two of its faces covered by hubs. Figure 10 shows a “construction unit” consisting of
a hub and four struts. The{3, 8} polyhedron is an approximation to Schwarz’s D-Surface, a TPMS. Both
surfaces have the same basic shape of a fattened diamond lattice. Figure 11 shows a portion of Schwarz’s
D-Surface that corresponds to the “construction unit” of the polyhedron.

By careful inspection of Figures 8 and 9, one notices that thetriads of butterflies meeting at right rear
wings do so in two different ways. Arbitrarily, we call them “left” and “right” triads of butterflies. It turns
out that all the exposed triangles of a hub of the{3, 8} polyhedron are of one kind and they alternate between
adjacent hubs — that is the triads on the hub at one end of a strut are the opposite kind from those on the
other end, as can be seen in Figure 12, which shows the{3, 8} polyhedron decorated with Escher butterflies.
Figure 12 is a view down one of the “tunnels” of the polyhedron; Figure 1 is a view down one of the 3-fold
rotation axes. Also, as mentioned above, Escher arranged that two colors of butterflies meet at left front
wing tips and those butterflies are decorated with wing spotsof the third color. Figure 13 shows that this
coloring is maintained by showing a close-up of a vertex at which blue and red butterflies meet at wing tips
and both have yellow wing spots on them.

5. Observations and Future Work

We have shown Escher patterns on two semiregular triply periodic polyhedra, which satisfied our goal of
finding polyhedra that could be nicely covered with Escher-inspired patterns. There are certainly other
Escher patterns that could be applied to these surfaces. Also, Escher patterns could be mapped onto other
triply periodic polyhedra, either semiregular or just uniform. Several such polyhedra are known, but have
not been classified (except for the most regular ones, the infinite skew polyhedra). The uniform polyhedra
would be analogous to the Archimedean solids. Another project would be to paint these patterns on the
intermediate TPMS’s, which could be manufactured by 3D printing.



Figure 8: Escher’s Regular Division Drawing
70.

Figure 9: A pattern of Butterflies based on
the{3, 8} Tessellation.

Figure 10: A “construction unit” for the{3, 8}
polyhedron.

Figure 11: Part of Schwarz’s D-Surface
corresponding to the “construction unit”.



Figure 12: A view down one of the “tunnels”
of the{3, 8} polyhedron.

Figure 13: A close-up showing colors of
butterflies and wing spots at a vertex.
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