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Abstract

In 1978 I thought it would be possible to design a computer algorithm to draw repeating hyperbolic patterns in a
Poincaré disk based on Hamiltonian paths in their symmetrygroups. The resulting successful program was capable
of reproducing each of M.C. Escher’s four “Circle Limit” patterns. The program could draw a few other patterns
too, but was somewhat limited. Over the years I have collaborated with students to develop algorithms that are more
general and more sophisticated. I will describe these algorithms and show some of the patterns they produced.

1. Introduction

For more than a century mathematicians have been drawing patterns to explain concepts in hyperbolic geom-
etry. Figure 1 shows one such pattern that appeared in a paperby the Canadian mathematician H.S.M. Cox-
eter [Cox57]. In 1958 Coxeter sent the Dutch artist M.C. Escher a reprint of that paper. When Escher saw

Figure 1: A hyperbolic triangle pattern.

the hyperbolic pattern, he said that it “gave me quite a shock”, since it showed him how to make an infinite
pattern within the confines of a finite disk. (Some of this Coxeter-Escher correspondence is recounted in
[Cox79].) Later that year, with the pattern of Figure 1 as inspiration, Escher created his first artistic hy-
perbolic pattern,Circle Limit I, a rendition of which is shown in Figure 2 below. In my 2003 Mathematics
Awareness Month essay [Dun03], I offer one explanation of how Escher might have constructedCircle Limit
I from the pattern of Figure 1. Over the next two years Escher went on to create three moreCircle Limit



patterns. Since he was working by hand, for each pattern carving a woodblock with a sector of the pattern,
then repeatedly rotatting and printing the woodblock to fillout the whole pattern, this was time consuming,
and probably the reason he stopped at four patterns.

Around 1970 I became intrigued by Escher’s mathematical art. Soon after I arrived at the University of
Minnesota Duluth in 1977, I discussed the group-theoretical aspects of Escher’s patterns with Joe Gallian.
At that time he had undergraduate research students who wereworking on finding Hamiltonian cycles and
paths in finite groups. Several months later it occurred to methat following a Hamiltonian path in the
symmetry group of a hyperbolic pattern could lead to an algorithm to draw such patterns. Indeed, this
turned out to be the case, as will be elaborated below.

In what follows, I start with a brief discussion of hyperbolic geometry, repeating patterns, and regular
tessellations. Then I explain how Hamiltonian paths in hyperbolic symmetry groups were utilized in a com-
puter program to draw repeating hyperbolic patterns. That method was the inspiration for other algorithms
for drawing such patterns. Finally, I discuss possible directions of future work. Along the way I show several
hyperbolic patterns.

2. Hyperbolic Geometry, Repeating Patterns, and Regular Tessellations

Axioms for the hyperbolic plane can be taken to be those of theEuclidean plane except that the Euclidean
parallel axiom is replaced by one of its negations: given a line and a point not on it, there is more than one
line through the point not meeting the original line [Gre93]. In 1901 David Hilbert proved that the entire
hyperbolic plane has no smooth, isometric embedding in Euclidean 3-space [Hil01]. Thus, we must rely
on Euclideanmodelsof hyperbolic geometry in which distance is measured differently and concepts such
as hyperbolic lines have interpretations as Euclidean constructs. Following Coxeter’s illustration in Figure
1, Escher used thePoincaŕe disk modelof hyperbolic geometry. In this model, hyperbolic points are just
the (Euclidean) points within a Euclidean bounding circle.Hyperbolic lines are represented by circular arcs
(including diameters) orthogonal to the bounding circle. For example, the backbone lines of the fish in
Figure 2 lie along hyperbolic lines. Figure 3 shows that thismodel satisfies the hyperbolic parallel axiom.

Figure 2: A rendition of Escher’s
Circle Limit I pattern.
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Figure 3: An example of the hyperbolic parallel
property: a lineℓ, a pointP not onℓ, and two lines
throughP not meetingℓ.



The Poincaré disk model is alsoconformal: the hyperbolic measure of an angle is the same as its
Euclidean measure. As a consequence, all the black fish inCircle Limit I have roughly the same Euclidean
shape, and the same is true of the white fish. However, equal hyperbolic distances correspond to ever smaller
Euclidean distances as one travels toward the edge of the disk. So all the black fish inCircle Limit I are the
same (hyperbolic) size, as are all the white fish. Note that the white fish are not isometric to the black fish
since the nose angle of the white fish is90◦ and the tail angle is60◦, the reverse of the nose and tail angles
of the black fish. The Poincaré disk model is appealing to artists (and appealed to Escher) since an infinitely
repeating pattern can be enclosed in a bounded area and shapes remain recognizable even for small copies
of the motif, due to conformality. Of course Escher was more interested in the Euclidean properties of the
disk model than the fact that it could be interpreted as hyperbolic geometry.

A repeating patternin hyperbolic geometry is a regular arrangement of copies ofa basic subpattern or
motif. The copies should not overlap, and a characteristic of Escher’s patterns is that there are also no gaps
between motifs. Half of one white fish plus half of an adjacentblack fish form a motif for theCircle Limit
I pattern. Similarly, a white triangle and an adjacent black triangle form a motif for the pattern in Figure 1.
One special repeating pattern is theregular tessellation, {p, q}, by regularp-sided polygons orp-gons, q of
which meet at each vertex. Figures 4 and 5 show the{6, 4} tessellation superimposed on renditions ofCircle
Limit I andCircle Limit IV. Similarly, Figures 6 and 7 show the{8, 3} tessellation superimposed onCircle

Figure 4: The {6, 4} tessellation superimposed on
theCircle Limit I pattern.

Figure 5: The {6, 4} tessellation superimposed on
theCircle Limit IV pattern.

Limit II and onCircle Limit III . Note that for{p, q} to be a tessellation of the hyperbolic plane, it is necessary
that(p− 2)(q − 2) > 4, otherwise one obtains one of the finitely many Euclidean or spherical tessellations.
Doris Schattschneider’s bookVisions of Symmetry[Sch04] is the definitive reference for Escher’s repeating
patterns.

3. Symmetry Groups for Hyperbolic Patterns

A symmetryof a repeating pattern is an isometry (distance-preservingtransformation) that transforms the
pattern onto itself. In the Poincaré disk model, hyperbolic reflections across hyperbolic lines are inversions
in the circular arcs representing those lines; reflections across diameters are ordinary Euclidean reflections.
And in hyperbolic geometry, just as in Euclidean geometry, atranslation is the composition of successive



Figure 6: The {8, 3} tessellation superimposed on
theCircle Limit II pattern.

Figure 7: The {8, 3} tessellation superimposed on
theCircle Limit III pattern.

reflections across two lines having a common perpendicular;the composition of reflections across two
intersecting lines produces a rotation about the intersection point by twice the angle of intersection. In
Circle Limit I (Figure 2), hyperbolic reflections across the backbone lines are symmetries of the repeating
patttern. Other symmetries ofCircle Limit I include rotations by 120 degrees about points where three black
fish noses meet, rotations of 180 degrees about white fish noses and also about the points where the trailing
edges of fin-tips meet, and translations by four fish-lengthsalong backbone lines.

Thesymmetry groupof a pattern is the set of all symmetries of the pattern. The symmetry group of the
tessellation{p, q} is denoted [p, q] and can be generated by reflections across the sides of a right triangle
with acute angles of 180/p degrees and 180/q degrees. For example, [6, 4] can be generated by reflections
across the sides of any one of the triangles in Figure 1. The orientation-preserving subgroup of [p, q] (of
index 2), consists of symmetries composed of an even number of reflections, and is denoted [p, q]+. Figure
8 shows a hyperbolic pattern with symmetry group [5, 5]+ (ignoring color). This pattern uses a fish motif
like that of Escher’s Notebook Drawing Number 20 (p. 131 of [Sch04]) and his carved sphere with fish
(p. 244 of [Sch04]); those ifsh patterns have symmetry groups [4, 4]+ and [3, 3]+ respectively.

There is another index 2 subgroup of [p, q] that is denoted [p+, q] and is generated by a rotation of
360/p degrees about the center of ap-gon and a reflection in one of its sides, whereq must be even so that
the reflections across the sides of thep-gon match up. The symmetry groups ofCircle Limit II andCircle
Limit IV (Figure 5) is an instance of [4+, 6] since rotating a joined half-angel and half-devil by90◦ three
times about their common wing tips will fill out a square; reflecting the rotated design across an edge of that
square and continuing to repeat the process will produce thewhole pattern (see [Dun86]). The symmetry
group ofCircle Limit II (Figure 6) is an instance of [3+, 8]. Figure 9 shows a pattern of 5-armed crosses with
symmetry group [3+, 10] that is similar to Escher’sCircle Limit II. In both patterns,120◦ rotation centers
are to the left and right of the ends of each cross arm, andq/2 reflection lines pass through the center of
the crosses (and the center of the bounding circle). In addition to Circle Limit IV, Escher used the group
[p+, q] for two other “angel and devil” patterns: Notebook DrawingNumber 45 andHeaven and Hellon
a carved maple sphere, with symmetry groups [4+, 4] and [3+, 4] respectively (see pages 150 and 244 of
[Sch04]). The angel and devil pattern is the only one Escher implemented on all three surfaces: the sphere,
the Euclidean plane, and the hyperbolic plane.



Figure 8: A hyperbolic pattern with symmetry
group [5, 5]+ using a fish motif like that of Escher’s
Notebook Drawing Number 20.

Figure 9: A hyperbolic pattern of 5-armed crosses
with symmetry group [3+, 10].

If both p and q are even, there is yet another index 2 subgroup of [p, q], denotedcmmp/2,q/2, that
is generated by reflections in two adjacent sides of a rhombuswith angles of360/p degrees and360/q
degrees, and a 180 degree rotation about its center. This notation generalizes the Euclidean case in which
cmm4/2,4/2 = cmm. ThusCircle Limit I (Figure 2) has symmetry groupcmm3,2. Figure 10 shows a
pattern with groupcmm3,3.

The symmetry group of the Escher’sCircle Limit III pattern (Figure 7) is generated by three rotations:
a 90◦ rotation about the right fin tip, a120◦ rotation about the left fin tip, and a120◦ rotation about the
nose of a fish. The two different kinds of 3-fold points alternate around the vertices of8-gons of the{8, 3}
tessellation. This symmetry group is often denoted(3, 3, 4). Figure 11 shows a pattern with symmetry
group(3, 3, 5) that is based on the{10, 3} tessellation. For more on these “Circle Limit III” patterns, see
[Dun07b].

4. Hamiltonian Paths and An Algorithm for Creating Repeating Hyperbolic Patterns

Given a generating set for a group, theCayley digraphfor that group is the graph whose vertices are group
elements and whose edges are labeled by the generators that take one vertex to another (i.e. there is an
edge fromu to v if there is a generatorg such thatv = gu). A Hamiltonian pathis a path that meets
each group element/vertex exactly once. In the infinite symmetry groups of hyperbolic patterns, we are
interested in “one-way” (infinite) paths that start at a vertex (usually the identity) and traverse all the group
elements/vertices. The motivation is that by traversing such a path and applying the generator transfor-
mations to successive copies of the motif, we can theoretically generate an entire hyperbolic pattern from
the original motif. Figure 12 shows a (one-way) Hamiltonianpath in the group [6, 4]. This is actually an
undirected graph since the generators are reflections and reflections are their own inverses.

Where did the path of Figure 12 come from? In the late 1970’s I posed the problem of finding such a path
to David Witte (Morris). He solved that problem and the related problems of finding Hamiltonian paths in
the symmetry groups of all four of Escher’s Circle Limit patterns. In fact he, Douglas Jungreis, and I, with
help from other undergraduate research students over a few years, published existence and non-existence
results for one-way and two-way paths in both directed and undirected Cayley graphs [Dun95].



Figure 10: A Circle Limit I fish pattern with sym-
metry groupcmm3,3.

Figure 11: A “Circle Limit III” pattern with sym-
metry group(3, 3, 5).

Figure 12: A Hamiltonian path in the group [6, 4].



As suggested above, the motivation for finding Hamiltonian paths was to incorporate them into an al-
gorithm to draw repeating hyperbolic patterns. Specifically, our first goal was to be able to draw each of
Escher’s four Circle Limit patterns using a computer, thus avoiding the tedious hand-work that Escher had to
go through. In examining the path of Figure 12, one notices that it circles around the center most of the time
in a single “layer” of triangles, except when it jumps from one layer to the next, and then reverses direction.
This was exactly the kind of pattern we wanted for the path, since if we followed it, drawing copies of the
motif as we went, we would fill up the Poincaré disk from the center outward without gaps or overlaps. We
wanted to avoid gaps to obtain a complete pattern, and we wanted to avoid overlaps not only for efficiency,
but because at that time our main hardcopy device was a pen plotter which would tear through the paper if
it drew over the same spot too many times. Of course we could only draw a finite number of layers, but this
was sufficient to give the idea of the entire infinite pattern.What David Witte Morris came up with were
essentially substitution rules for creating the path on thenext layer, given the choices on the current layer
(there were also the transitions from one layer to the next tofigure out).

At this point John Lindgren, a University of Minnesota Duluth undergraduate entered the picture to do
the programming. So the setup was: Witte Morris would come upwith the rules, I would translate them to
pseudocode, and Lindgren would implement it in FORTRAN. Theprogram that we created could generate
patterns with several kinds of symmetry groups: [p, q], [p, q]+, [p+, q], cmm3,2, and(3, 3, p/2) (I think it
may have worked for generalcmmp/2,q/2 too). Thus we could generate all four of Escher’s Circle Limit
patterns, which was our goal. We published the results in SIGGRAPH ’81 [Dun81]. We generated the figures
for that paper using our FORTRAN program, but we also presented a recursive algorithm. Unfortunately
there was an error in that algorithm, but it was fixed in a laterpaper [Dun86].

5. Other Hyperbolic Pattern-Generating Algorithms

The first simplification to our algorithm was motivated by theobservation that most of Escher’s repeating
patterns, including all the spherical and hyperbolic ones,were based on regular{p, q} tessellations. The
idea was to combine all of the motifs within ap-gon into asupermotif(which we called ap-gon patternin
previous papers). Figure 13 shows the supermotif forCircle Limit I. Then the supermotif could be trans-
formed about the hyperbolic plane. To do this, we found Hamiltonian paths in what we call “Cayley coset
graphs” of the desired symmetry groups. The stabilizer,H, of the supermotif is used to define cosets of
the symmetry group. So the cosets can be represented visually by p-gons in the{p, q} tessellation, and
there is an edge from cosetxH to yH if there is a generatorg such thatgxH = yH. These Hamiltonian
paths seemed to be easier to find and to program than those for the full group. Figure 14 shows the coset
graph edges for the group [6, 4] as straight line segments and the6-gon edges as (light) circular arcs; the
Hamiltonian path consists of the dark line segments of the coset graph.

The Hamiltonian path methods led to roundoff errors due to successively multiplying many matrices
together to get the current transformation matrix. We actually didn’t notice this until we replaced an old but
high-precision computer with a newer one with half the precision. This problem was solved by devising a
recursive algorithm. The recursive algorithm essentiallytraversed a spanning tree in the coset graph. Figure
15 shows a spanning tree in the coset graph of the group [6, 4]. Again, it was fairly easy to devise spanning
trees and to program them. One such algorithm was presented in [Dun86].

A more general recursive algorithm has been devised that removes the restriction that the pattern be
based on a{p, q} tessellation [Dun07a]. This method assumes that the motif is contained in a finite convex
polygon that tiles the hyperbolic plane, and thus has rational angles at its corners. The algorithm proceeds
by transforming the motif across sides of copies of that polygon. This algorithm seems more combinatorial
than group-theoretic in nature. Figure 16 shows a pattern created by this algorithm — it is based on Escher’s
“three element” pattern, Notebook Drawing Number 85 (page 184 of [Sch04]). The three elements are a
lightly shaded bats for air, a gray lizards for earth, and a dark fish for water (Escher’s colors are yellow, red,
and blue for the bats, lizards, and fish respectively).



Figure 13: The supermotif forCircle Limit I. Figure 14: A Hamiltonian path in the coset graph of
[6, 4].

Figure 15: A spanning tree in the coset graph of
[6, 4].

Figure 16: A “three elements” pattern with 3 bats,
5 lizards, and 4 fish meeting at their heads.



6. Conclusion and Future Work

We have shown how Hamiltonian paths were first used to create hyperbolic pattern programs, and then later
extended to other algorithms. This was actually a bootstrapprocess since we used the patterns drawn by one
program to figure out an algorithm for the next program. Thus the initial Hamiltonian path program was the
key to getting the algorithm development process started.

There are several problems that are yet to be solved. The firstis to allow some of the vertices of
the motif-enclosing polygon to be on the bounding circle. The second is to transform a motif within one
polygon to another polygon. Currently the different versions of the programs can produce patterns with
(perfect) color symmetry, but the color permutations must be figured out ahead of time and hand-coded into
the motif data files. This leads to the third, and seemingly difficult problem of automating the process of
generating patterns with color symmetry, one of the hallmarks of Escher’s patterns.
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