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Abstract

In 1978 | thought it would be possible to design a computeordtigm to draw repeating hyperbolic patterns in a
Poincaré disk based on Hamiltonian paths in their symngroyps. The resulting successful program was capable
of reproducing each of M.C. Escher’s four “Circle Limit” patns. The program could draw a few other patterns
too, but was somewhat limited. Over the years | have colliedrwith students to develop algorithms that are more
general and more sophisticated. | will describe these hgns and show some of the patterns they produced.

1. Introduction

For more than a century mathematicians have been drawiteymsto explain concepts in hyperbolic geom-
etry. Figure 1 shows one such pattern that appeared in a pgplee Canadian mathematician H.S.M. Cox-
eter [Cox57]. In 1958 Coxeter sent the Dutch artist M.C. Esehreprint of that paper. When Escher saw

Figure 1. A hyperbolic triangle pattern.

the hyperbolic pattern, he said that it “gave me quite a shaiice it showed him how to make an infinite
pattern within the confines of a finite disk. (Some of this Qex&scher correspondence is recounted in
[Cox79].) Later that year, with the pattern of Figure 1 agiration, Escher created his first artistic hy-
perbolic patternCircle Limit I, a rendition of which is shown in Figure 2 below. In my 2003 Ranhatics
Awareness Month essay [Dun03], | offer one explanation @f Bscher might have construct€drcle Limit

| from the pattern of Figure 1. Over the next two years Eschertwa to create three mof@ircle Limit



patterns. Since he was working by hand, for each patternngaavwoodblock with a sector of the pattern,
then repeatedly rotatting and printing the woodblock taofiit the whole pattern, this was time consuming,
and probably the reason he stopped at four patterns.

Around 1970 | became intrigued by Escher’s mathematicalSaon after | arrived at the University of
Minnesota Duluth in 1977, | discussed the group-theoretispects of Escher’s patterns with Joe Gallian.
At that time he had undergraduate research students whoweekéing on finding Hamiltonian cycles and
paths in finite groups. Several months later it occurred totima¢ following a Hamiltonian path in the
symmetry group of a hyperbolic pattern could lead to an #gor to draw such patterns. Indeed, this
turned out to be the case, as will be elaborated below.

In what follows, | start with a brief discussion of hypertwoieometry, repeating patterns, and regular
tessellations. Then | explain how Hamiltonian paths in mgpkc symmetry groups were utilized in a com-
puter program to draw repeating hyperbolic patterns. Thethod was the inspiration for other algorithms
for drawing such patterns. Finally, | discuss possibleddioms of future work. Along the way | show several
hyperbolic patterns.

2. Hyperbolic Geometry, Repeating Patterns, and Regular Tessellations

Axioms for the hyperbolic plane can be taken to be those oEtngidean plane except that the Euclidean
parallel axiom is replaced by one of its negations: givema &nd a point not on it, there is more than one
line through the point not meeting the original line [Gre98j 1901 David Hilbert proved that the entire
hyperbolic plane has no smooth, isometric embedding inieeh 3-space [Hil01]. Thus, we must rely
on Euclidearmodelsof hyperbolic geometry in which distance is measured difily and concepts such
as hyperbolic lines have interpretations as Euclideantngris. Following Coxeter’s illustration in Figure
1, Escher used thBoincaie disk modebf hyperbolic geometry. In this model, hyperbolic pointe arst
the (Euclidean) points within a Euclidean bounding cir¢lgperbolic lines are represented by circular arcs
(including diameters) orthogonal to the bounding circleor Example, the backbone lines of the fish in
Figure 2 lie along hyperbolic lines. Figure 3 shows that thexel satisfies the hyperbolic parallel axiom.

P
Figure 2: A rendition of Escher’s Figure 3: An example of the hyperbolic parallel
Circle Limit | pattern. property: a line/, a pointP not on/, and two lines

through P not meeting.



The Poincaré disk model is alsmnformal the hyperbolic measure of an angle is the same as its
Euclidean measure. As a consequence, all the black fi€liréte Limit | have roughly the same Euclidean
shape, and the same is true of the white fish. However, eqpatbglic distances correspond to ever smaller
Euclidean distances as one travels toward the edge of tke®lisall the black fish if€Circle Limit | are the
same (hyperbolic) size, as are all the white fish. Note thainthite fish are not isometric to the black fish
since the nose angle of the white fisti¥ and the tail angle i§0°, the reverse of the nose and tail angles
of the black fish. The Poincaré disk model is appealing istarfand appealed to Escher) since an infinitely
repeating pattern can be enclosed in a bounded area andsskeapsn recognizable even for small copies
of the motif, due to conformality. Of course Escher was materested in the Euclidean properties of the
disk model than the fact that it could be interpreted as Hygar geometry.

A repeating patterrin hyperbolic geometry is a regular arrangement of copies lodisic subpattern or
motif. The copies should not overlap, and a characteristic of &schatterns is that there are also no gaps
between motifs. Half of one white fish plus half of an adjadgatk fish form a motif for theCircle Limit
| pattern. Similarly, a white triangle and an adjacent blai@dngle form a motif for the pattern in Figure 1.
One special repeating pattern is tiegular tessellation{p, ¢}, by regularp-sided polygons op-gons ¢ of
which meet at each vertex. Figures 4 and 5 show{ e} tessellation superimposed on rendition€atle
Limit I andCircle Limit IV. Similarly, Figures 6 and 7 show tH&, 3} tessellation superimposed @ircle

Figure 4: The {6,4} tessellation superimposed oRigure 5. The {6,4} tessellation superimposed on
the Circle Limit | pattern. the Circle Limit IV pattern.

Limit Il and onCircle Limit Ill. Note that for{p, ¢} to be a tessellation of the hyperbolic plane, it is necessary
that(p — 2)(¢ — 2) > 4, otherwise one obtains one of the finitely many Euclidearpbescal tessellations.
Doris Schattschneider’s bodksions of Symmetf{sch04] is the definitive reference for Escher’s repeating
patterns.

3. Symmetry Groupsfor Hyperbolic Patterns

A symmetryof a repeating pattern is an isometry (distance-presertrangsformation) that transforms the

pattern onto itself. In the Poincaré disk model, hyperbodiflections across hyperbolic lines are inversions
in the circular arcs representing those lines; reflectiangss diameters are ordinary Euclidean reflections.
And in hyperbolic geometry, just as in Euclidean geometriyaaslation is the composition of successive



Figure 6: The {8, 3} tessellation superimposed oRigure 7. The {8,3} tessellation superimposed on
the Circle Limit Il pattern. the Circle Limit Il pattern.

reflections across two lines having a common perpendictiteer;composition of reflections across two
intersecting lines produces a rotation about the inteimegioint by twice the angle of intersection. In
Circle Limit | (Figure 2), hyperbolic reflections across the backboneslare symmetries of the repeating
patttern. Other symmetries @lircle Limit | include rotations by 120 degrees about points where theazk bl
fish noses meet, rotations of 180 degrees about white fisls moskalso about the points where the trailing
edges of fin-tips meet, and translations by four fish-lengtbsg backbone lines.

Thesymmetry groupf a pattern is the set of all symmetries of the pattern. Thensgtry group of the
tessellation{p, ¢} is denoted 3, q] and can be generated by reflections across the sides oftarniggtgle
with acute angles of 18p/degrees and 18fdegrees. For examplej,[4] can be generated by reflections
across the sides of any one of the triangles in Figure 1. Tieamtation-preserving subgroup af,[] (of
index 2), consists of symmetries composed of an even nunilieflections, and is denoteg,[q] ™. Figure
8 shows a hyperbolic pattern with symmetry groép5]* (ignoring color). This pattern uses a fish motif
like that of Escher's Notebook Drawing Number 20 (p. 131 ofH®4]) and his carved sphere with fish
(p. 244 of [Sch04)); those ifsh patterns have symmetry gsdqupt] ™ and B, 3] respectively.

There is another index 2 subgroup ¢f §] that is denotedsf", q] and is generated by a rotation of
360/p degrees about the center op-@on and a reflection in one of its sides, whenaust be even so that
the reflections across the sides of fhigon match up. The symmetry groups@ifcle Limit Il andCircle
Limit IV (Figure 5) is an instance oftf, 6] since rotating a joined half-angel and half-devil &y three
times about their common wing tips will fill out a square; refieg the rotated design across an edge of that
square and continuing to repeat the process will producevtimde pattern (see [Dun86]). The symmetry
group ofCircle Limit Il (Figure 6) is an instance o#, 8]. Figure 9 shows a pattern of 5-armed crosses with
symmetry groupJ™, 10] that is similar to Escher'€ircle Limit 1. In both patterns]20° rotation centers
are to the left and right of the ends of each cross arm,¢@deflection lines pass through the center of
the crosses (and the center of the bounding circle). In iaddib Circle Limit IV, Escher used the group
[pT, q] for two other “angel and devil” patterns: Notebook DrawiNgmber 45 andHeaven and Helbn
a carved maple sphere, with symmetry groups, i] and 37, 4] respectively (see pages 150 and 244 of
[Sch04]). The angel and devil pattern is the only one Esahptdmented on all three surfaces: the sphere,
the Euclidean plane, and the hyperbolic plane.



group p,5]" using a fish motif like that of Escher'svith symmetry groupd™, 10].
Notebook Drawing Number 20.

If both p and ¢ are even, there is yet another index 2 subgrouppof][ denotedcmm,, /s /o, that
is generated by reflections in two adjacent sides of a rhomlilsangles of360/p degrees and60/q
degrees, and a 180 degree rotation about its center. Thiiorogeneralizes the Euclidean case in which
cmmy g 472 = cmm. ThusCircle Limit | (Figure 2) has symmetry groupnmg . Figure 10 shows a
pattern with grougmms 3.

The symmetry group of the Eschef@rcle Limit Il pattern (Figure 7) is generated by three rotations:
a 90° rotation about the right fin tip, 420° rotation about the left fin tip, and B0° rotation about the
nose of a fish. The two different kinds of 3-fold points alemaround the vertices 8fgons of the{s, 3}
tessellation. This symmetry group is often denot8d3,4). Figure 11 shows a pattern with symmetry
group (3, 3,5) that is based on th€l0, 3} tessellation. For more on these “Circle Limit Ill” patterrsee
[Dun07b].

4. Hamiltonian Paths and An Algorithm for Creating Repeating Hyper bolic Patterns

Given a generating set for a group, Bayley digraphfor that group is the graph whose vertices are group
elements and whose edges are labeled by the generatorakbatrie vertex to another (i.e. there is an
edge fromu to v if there is a generatog such thatv = gu). A Hamiltonian pathis a path that meets
each group element/vertex exactly once. In the infinite sgtmyngroups of hyperbolic patterns, we are
interested in “one-way” (infinite) paths that start at a eerfusually the identity) and traverse all the group
elements/vertices. The motivation is that by traversinghsa path and applying the generator transfor-
mations to successive copies of the motif, we can theotigtiganerate an entire hyperbolic pattern from
the original motif. Figure 12 shows a (one-way) Hamiltongath in the groupd, 4]. This is actually an
undirected graph since the generators are reflections #edtiens are their own inverses.

Where did the path of Figure 12 come from? In the late 1970&skd the problem of finding such a path
to David Witte (Morris). He solved that problem and the retaproblems of finding Hamiltonian paths in
the symmetry groups of all four of Escher’s Circle Limit matts. In fact he, Douglas Jungreis, and I, with
help from other undergraduate research students over adavs,ypublished existence and non-existence
results for one-way and two-way paths in both directed artiracted Cayley graphs [Dun95].



Figure 10: A Circle Limit | fish pattern with sym-Figure 11: A “Circle Limit IlI” pattern with sym-
metry groupcmms 3. metry group(3, 3, 5).

Figure 12: A Hamiltonian path in the grous][ 4].



As suggested above, the motivation for finding Hamiltoniathp was to incorporate them into an al-
gorithm to draw repeating hyperbolic patterns. Specifycallr first goal was to be able to draw each of
Escher’s four Circle Limit patterns using a computer, thegding the tedious hand-work that Escher had to
go through. In examining the path of Figure 12, one noticasitltircles around the center most of the time
in a single “layer” of triangles, except when it jumps fromedayer to the next, and then reverses direction.
This was exactly the kind of pattern we wanted for the patigesif we followed it, drawing copies of the
motif as we went, we would fill up the Poincaré disk from thatee outward without gaps or overlaps. We
wanted to avoid gaps to obtain a complete pattern, and wesdidatavoid overlaps not only for efficiency,
but because at that time our main hardcopy device was a p#erphihich would tear through the paper if
it drew over the same spot too many times. Of course we collddvaw a finite number of layers, but this
was sufficient to give the idea of the entire infinite pattevihat David Witte Morris came up with were
essentially substitution rules for creating the path onriixet layer, given the choices on the current layer
(there were also the transitions from one layer to the nefigtoe out).

At this point John Lindgren, a University of Minnesota Diiluindergraduate entered the picture to do
the programming. So the setup was: Witte Morris would comevitip the rules, | would translate them to
pseudocode, and Lindgren would implement it in FORTRAN. pragram that we created could generate
patterns with several kinds of symmetry groups:q|, [p,q] ™, [p™, q], emms2, and(3,3,p/2) (I think it
may have worked for generatnm,, ,/» t00). Thus we could generate all four of Escher’s Circle Itimi
patterns, which was our goal. We published the results irGRGPH '81 [Dun81]. We generated the figures
for that paper using our FORTRAN program, but we also preskatrecursive algorithm. Unfortunately
there was an error in that algorithm, but it was fixed in a latgver [Dun86].

5. Other Hyperbolic Pattern-Generating Algorithms

The first simplification to our algorithm was motivated by theservation that most of Escher’s repeating
patterns, including all the spherical and hyperbolic omesre based on reguldp, ¢} tessellations. The
idea was to combine all of the motifs withinpagon into asupermotifiwhich we called a-gon patternin
previous papers). Figure 13 shows the supermotiiCfiocle Limit I. Then the supermotif could be trans-
formed about the hyperbolic plane. To do this, we found Hemian paths in what we call “Cayley coset
graphs” of the desired symmetry groups. The stabilizér,of the supermotif is used to define cosets of
the symmetry group. So the cosets can be represented yifyatl-gons in the{p, ¢} tessellation, and
there is an edge from cose# to yH if there is a generatay such thatyz H = yH. These Hamiltonian
paths seemed to be easier to find and to program than thodeeféult group. Figure 14 shows the coset
graph edges for the group,[4] as straight line segments and thgon edges as (light) circular arcs; the
Hamiltonian path consists of the dark line segments of tisetcgraph.

The Hamiltonian path methods led to roundoff errors due twassively multiplying many matrices
together to get the current transformation matrix. We distutidn’t notice this until we replaced an old but
high-precision computer with a newer one with half the mieci. This problem was solved by devising a
recursive algorithm. The recursive algorithm essentiaflyersed a spanning tree in the coset graph. Figure
15 shows a spanning tree in the coset graph of the gr@uf). [Again, it was fairly easy to devise spanning
trees and to program them. One such algorithm was presenfBdin86].

A more general recursive algorithm has been devised thabwesnthe restriction that the pattern be
based on dp, ¢} tessellation [Dun07a]. This method assumes that the nsotibntained in a finite convex
polygon that tiles the hyperbolic plane, and thus has ratiangles at its corners. The algorithm proceeds
by transforming the motif across sides of copies of that gaty This algorithm seems more combinatorial
than group-theoretic in nature. Figure 16 shows a patterated by this algorithm — it is based on Escher’s
“three element” pattern, Notebook Drawing Number 85 (pa8é df [Sch04]). The three elements are a
lightly shaded bats for air, a gray lizards for earth, andr& éiah for water (Escher’s colors are yellow, red,
and blue for the bats, lizards, and fish respectively).



Figure 13: The supermotif folCircle Limit I. Figure 14: A Hamiltonian path in the coset graph of
[6, 4].

.

Figure 15: A spanning tree in the coset graph dfigure 16: A “three elements” pattern with 3 bats,
[6,4]. 5 lizards, and 4 fish meeting at their heads.



6. Conclusion and Future Work

We have shown how Hamiltonian paths were first used to crgguerholic pattern programs, and then later
extended to other algorithms. This was actually a bootgirapess since we used the patterns drawn by one
program to figure out an algorithm for the next program. Tiesinitial Hamiltonian path program was the
key to getting the algorithm development process started.

There are several problems that are yet to be solved. Theiditst allow some of the vertices of
the motif-enclosing polygon to be on the bounding circle.e Becond is to transform a motif within one
polygon to another polygon. Currently the different vensiof the programs can produce patterns with
(perfect) color symmetry, but the color permutations mesfiured out ahead of time and hand-coded into
the motif data files. This leads to the third, and seemingffjcdit problem of automating the process of
generating patterns with color symmetry, one of the halkaaif Escher’s patterns.
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