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Escher’s Woodcut Circle Limit I



Aesthetic Problems with Circle Limit I per Escher

1. The fish were not consistently colored along backbone lines — they
alternated from black to white and back every two fish lengths.

2. The fish also changed direction every two fish lengths — thus there
was no “traffic flow” (Escher’s words) in a single direction along the
backbone lines.

3. The fish are very angular and not “fish-like”



Escher’s Woodcut Circle Limit III

— solved the problems



Regular Triply Repeating Polyhedra

In 1926 H.S.M. Coxeter defined regular skew polyhedra (apeirohedra) to
be infinite polyhedra repeating in three independent directions in
Euclidean 3-space, with the symmetry group of isometries being
transitive on flags.

Coxeter denoted them by the extended Schläfli symbol {p, q | r} which
denotes the polyhedron composed of p-gons meeting q at each vertex,
with regular r -sided polygonal holes.

Coxeter and John Flinders Petrie proved that there are exactly three of
them: {4, 6 | 4}, {6, 4 | 4}, and {6, 6 | 3}.

Since the sum of the vertex angles is greater than 2π, they are considered
to be the hyperbolic analogs of the Platonic solids and the regular
Euclidean tessellations {3, 6}, {4, 4}, and {6, 3}

In 2012 Dunham was the first person to decorate those solids with
Escher-inspired patterns.



The simplest regular skew polyhedron:

Also called the Mucube (for Multi-cube). It consists of invisible “hub”
cubes connected by “strut” cubes, hollow cubical cylinders with their
open ends connecting neighboring hubs.



An old patterned {4, 6 | 4} with fish



Problems with the old fish polyhedron

1. The same three problems Escher saw in Circle Limit I.

2. A fourth problem: the backbone lines of a particular color are not
parallel — which can be seen in a mirror.



The old fish polyhedron on a mirror



A new papercrafted fish pattern on the {4, 6 | 4} polyhedron

Fixes the first and third problems.



The papercrafted {4, 6 | 4} polyhedron on a mirror

Fixes the fourth problem too, but not the second one.



Colors of fish on the {4, 6 | 4} polyhedron

1. There are six families of fish backbone lines that are parallel to the
face diagonals of a cube.

2. All the fish in one family are the same color.



The dual of the Mucube is the {6, 4 | 4} polyhedron

Also called the Muoctahedron (for Multi-octahedron). It consists of
truncated octahedra in a cubic lattice arrangement, connected on their
invisible square faces (which are also the square holes between the
truncated octahedra).



An angular fish pattern on the {6, 4 | 4} polyhedron



A top view of the fish pattern on the {6, 4 | 4} polyhedron

It solves Escher’s first problem, but still has problems two and three.



The {6, 6 | 3} polyhedron is self-dual

Also called the Mutetrahedron (for Multi-tetrahedron). It consists of
truncated tetrahedra in a diamond lattice arrangement, connected by
their missing triangular faces to faces of invisible regular tetrahedra
between them.



The hand-designed {6, 6 | 3} patterned polyhedron
Which fixed the second, ”traffic flow”, problem.



The papercrafted {6, 6 | 3} polyhedron



Colors of fish on the {6, 6 | 3} polyhedron

1. There are six families of fish backbone lines that go through the
centers of the hexagon faces of the {6, 6 | 3} polyhedron.

2. And as with the patterned {4, 6 | 4} polyhedron, the fish in one
family are the same color.

3. Each of the families is parallel to one of the sides of a tetrahedron
— which can be one of the truncated tetrahedra, since all the
(patterned) truncated tetrahedra in the {6, 6 | 3} polyhedron are
translates of one another.

4. In the {6, 6 | 3} polyhedron, each family half the lines of fish go one
direction, and the other half go the opposite direction — so that fish
of one color on one truncated tetrahedron go in opposite directions
on adjacent faces (unlike the fish lines on the {4, 6 | 4} polyhedron).



Comparison of fish patterns on the {4, 6 | 4} and {6, 6 | 3} polyhedra

Figure: Fish pattern on {4, 6 | 4} Figure: Fish pattern on {6, 6 | 3}



Future Work
◮ One problem with our fish pattern on the {6, 6 | 3} polyhedron is

that there are two kinds of fish — those with fins sweeping forward
and those with fins sweeping back.

◮ We believe that there is no natural fish pattern on any {p, q | r}
polyhedron with only one kind of fish.

◮ So a possible solution would be to put a fish pattern on a more
general triply repeating polyhedron.

◮ One possibility is to use a {3, 8} polyhedron.

◮ We have previously done this, but with the fish swimming through
the centers of the triangles as shown below. But a more satisfying
solution might have the fish swimming along triangle edges.



Fish on a {3, 8} polyhedron.



Future Work — More General

◮ If the {3, 8} fish project is successful, we would like to make a
papercrafted version of it.

◮ We would like to explore putting other patterns on the {p, q | r}
polyhedra.

◮ We would also like to explore putting patterns on other less regular
triply periodic {p, q} polyhedra.
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