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Previously Designed Patterned Polyhedra

M.C. Escher (1898-1972) created at least 3 such polyhedra.

In 1977 Doris Schattschneider and Wallace Walker placed Escher
patterns on each of the Platonic solids and the cuboctahedron.

Schattschneider and Walker also put Escher patterns on rotating
rings of tetrahedra, which they called “kaleidocycles”.

In 1985 H.S.M. Coxeter showed how to place 18 Escher butterflies
on a torus.
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Triply Periodic Polyhedra

A triply periodic polyhedron is a (non-closed) polyhedron that
repeats in three different directions in Euclidean 3-space.

We will consider the special case of uniform triply periodic
polyhedra which have the same vertex figure at each vertex —

i.e. there is a symmetry of the polyhedron that takes any vertex to
any other vertex..

We will mostly discuss a speciallization of uniform triply periodic
polyhedra: regular triply periodic polyhedra which are
“flag-transitive” — there is a symmetry of the polyhedron that
takes any vertex, edge containing that vertex, and face containing
that edge to any other such (vertex, edge, face) combination.

In 1926 John Petrie and H.S.M. Coxeter proved that there are
exactly three regular triply periodic polyhedra, which Coxeter
denoted {4,6|4}, {6,4|4}, and {6, 6|3}, where {p, g|r} denotes a
polyhedron made up of p-sided regular polygons meeting g at a
vertex, and with regular r-sided holes.



Inspirations for this Work

» Two papers by Steve Luecking at ISAMA 2011:

» Building a Sherk Surface from Paper Tiles
» Sculpture From a Space Filling Saddle Pentahedron

» Bead sculptures that approximate three triply periodic minimal
surfaces (TPMS) by Chern Chuang, Bih-Yaw Jin, and Wei-Chi Wei
at the 2012 Joint Mathematics Meeting Art Exhibit.

As we will see, some TPMS's are related to triply periodic
polyhedra.



Hyperbolic Geometry and Regular Tessellations

» In 1901, David Hilbert proved that, unlike the sphere, there was no
isometric (distance-preserving) embedding of the hyperbolic plane
into ordinary Euclidean 3-space.

> Thus we must use models of hyperbolic geometry in which Euclidean
objects have hyperbolic meaning, and which must distort distance.

> One such model is the Poincaré disk model. The hyperbolic points
in this model are represented by interior point of a Euclidean circle
— the bounding circle. The hyperbolic lines are represented by
(internal) circular arcs that are perpendicular to the bounding circle
(with diameters as special cases).

> This model is appealing to artests since (1) angles have their
Euclidean measure (i.e. it is conformal), so that motifs of a
repeating pattern retain their approximate shape as they get smaller
toward the edge of the bounding circle, and (2) it can display an
entire pattern in a finite area.
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Repeating Patterns and Regular Tessellations

A repeating pattern in any of the 3 “classical geometries”
(Euclidean, spherical, and hyperbolic geometry) is composed of
congruent copies of a basic subpattern or motif.

The regular tessellation, {p, q}, is an important kind of repeating
pattern composed of regular p-sided polygons meeting g at a vertex.

If (p—2)(qg—2) <4, {p,q} is a spherical tessellation (assuming
p > 2 and g > 2 to avoid special cases).

If (p—2)(g—2) =4, {p,q} is a Euclidean tessellation.

If (p—2)(g—2) >4, {p,q} is a hyperbolic tessellation. The next
slide shows the {6,4} tessellation.

Escher based his 4 “Circle Limit" patterns, and many of his
spherical and Euclidean patterns on regular tessellations.






The tessellation {4,6} superimposed on the pattern of angular fish
of the title slide pattern




Relation between periodic polyhedra and regular tessellations
— a 2-Step Process

> (1) Some triply periodic polyhedra approximate TPMS's.

As a bonus, some triply periodic polyhedra contain embedded
Euclidean lines which are also lines embedded in the corresponding
TPMS.

> (2) As a minimal surface, a TPMS has negative curvature (except
for isolated points of zero curvature), and so its universal covering
surface also has negative curvature and thus has the same
large-scale geometry as the hyperbolic plane.

So the polygons of the triply periodic polyhedron can be transferred
to the polygons of a corresponding regular tessellation of the
hyperbolic plane.

» We show this relationship in the next slides.



The triply periodic polyhedron of the Title Slide
— showing colored embedded lines




Schwarz’s P-surface — approximated by the previous triply
periodic polyhedron, and showing corresponding embedded lines




A close-up of Schwarz’s P-surface showing corresponding
embedded lines and “skew rhombi”




The pattern of the Title Slide “unfolded” onto a repeating pattern
of the hyperbolic plane — showing the embedded lines as
hyperbolic lines, which bound the “skew rhombi”.




Patterns on the {4, 6|4} Polyhedron

We show two patterns on the {4,6|4} polyhedron:

> The pattern of the Title Slide, which we have seen.
Here we show a close-up of one of the vertices.
> A pattern of angels and devils, inspired by Escher. We show both

the patterned polyhedron and the corresponding pattern in the
hyperbolic plane



A close-up of a vertex of the Title Slide polyhedron




Angels and Devils on the {4,6/4} polyhedron




The corresponding Angels and Devils pattern in the hyperbolic
plane




Patterns on the {6, 4|4} Polyhedron

A pattern of angels and devils on the {6,4|4} polyhedron




A Pattern of Fish on the {6,4]4} Polyhedron
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A top view of the fish on the {6,4|4} polyhedron — showing fish
along embedded lines




The corresponding hyperbolic pattern of fish — a version of
Escher’s Circle Limit | pattern with 6-color symmetry




A Pattern of Fish on the {6, 6|3} Polyhedron




A top view of the fish on the {6,6|3} polyhedron — showing a
vertex




The corresponding hyperbolic pattern of fish — based on the
{6,6} tessellation




Patterns of Fish on a {3, 8} Polyhedron

Using a uniform triply periodic {3,8} polyhedron, we show a pattern of
fish inspired by Escher’s hyperbolic print Circle Limit Ill, which is based
on the regular {3, 8} tessellation. This polyhedron is related to Schwarz's
D-surface, a TRMS with the topology of a thickened diamond lattice,
which has embedded lines. The red, green, and yellow fish swim along
those lines (the blue fish swim in loops around the “waists”). We show:

> A piece of the triply periodic polyhedron.

» A corresponding piece of the patterned polyhedron.

> A piece of Schwarz's D-surface showing embedded lines.

» Escher’s Circle Limit Ill with the equilateral triangle tessellation
superimposed.

> A large piece of the patterned polyhedron.

> A top view of the large piece.



A piece of the triply periodic polyhedron




A corresponding piece of the patterned polyhedron




A piece of Schwarz’s D-surface showing embedded lines




Escher’s Circle Limit Ill with the equilateral triangle tessellation
superimposed
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A large piece of the patterned polyhedron




A top view of the large piece




Future Work

Put other patterns on the regular triply periodic polyhedra,
exploiting their embedded lines.

Place patterns on non-regular, uniform triply periodic polyhedra.

Put patterns on non-uniform triply periodic polyhedra — especially
those that more closely approximate triply periodic minimal surfaces.

Draw patterns on TPMS's — the gyroid, for example.
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