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Background

Our original goal was to create patterns by randomly filling a region R

with successively smaller copies of a motif, creating a fractal pattern.

This goal can be achieved if the motifs follow an “area rule” which we
describe in the next slide.

The resulting algorithm is quite robust in that it has been found to work
for hundreds of patterns in (combinations of) the following situations:

◮ The region R is connected or not.

◮ The region R has holes — i.e. is not simply connected.

◮ The motif is not connected or simply connected.

◮ The motifs have multiple (even random) orientations.

◮ The pattern has multiple (even all different) motifs.

◮ If R is a rectangle, the pattern can be periodic — it can repeat
horizontally and vertically, and thus tile the plane. The code is
different and more complicated in this case.



The Area Rule

If we wish to fill a region R of area A with successively smaller copies of
a motif (or motifs), it has been found experimentally that this can be
done for i = 0, 1, 2, . . ., with the area Ai of the i-th motif obeying an
inverse power law:

Ai =
A

ζ(c ,N)(N + i)c

where where c > 1 and N > 0 are parameters, and ζ(c ,N) is the Hurwitz
zeta function: ζ(s, q) =

∑
∞

k=0
1

(q+k)s (and thus
∑

∞

k=0 Ai = A).

We call this the Area Rule



The Algorithm

The algorithm works by successively placing copies mi of the motif at
locations inside the bounding region R .

This is done by repeatedly picking a random trial location (x , y) inside R

until the motif mi placed at that location doesn’t intersect any previously
placed motifs.

We call such a successful location a placement. We store that location
in an array so that we can find successful locations for subsequent motifs.

We show an example of how this works in the following slides.



A pattern of 21 circles partly filling a circle

(Note: c = 1.30 and N = 2 in this example)



Placement of the first motif



Placement of the second motif



First trial for the third motif



Second trial for the third motif



Third trial for the third motif



Successful placement of the third motif



All 245 trials for placement of the 21 circles



A Flowchart for the Algorithm

i = 0

trial — place motif i at random
position inside region R
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A Conjecture

Conjecture: The algorithm will randomly fill any reasonably defined
region R with any reasonably defined motif(s), and it will not halt for
1 < c < c max and N > N min > 0, for appropriate values of c max

and N min (which depend on the shapes of R and the motifs).

Typically values of c max seem to be somewhat less than 1.5; often the
values of N that were used were 2 or greater (not necessarily integer).

This algorithm has been implemented in dimensions 1, 2, 3, and 4,
though we note that 1D patterns are not very interesting, and the
“front” motifs in 3D and 4D obscure the motifs behind them.

In 1D, in which the motifs are line segments, it has been proved that the
algorithm never halts for any c with 1 < c < 2.

Also, the fractal dimensions of the patterns (not the unused portion of
R) can be calculated to be 1/c , 2/c , and 3/c in the 1D, 2D, and 3D
cases respectively, which leads to the conjecture that the fractal
dimension is d/c in d-dimensional space.



Dependence of patterns on c and N

By examining the formula that gives the Area Rule:

Ai =
A

ζ(c ,N)(N + i)c

one can see that as c increases or N decreases, there is a larger difference
in the sizes of the first few motifs.

Conversely, as c decreases or N increases, the first few motifs are closer
in size.

The next slide shows a graph of how the sizes of the i-th motif decrease
for different values of c and N .

Following that, we show how patterns depend on c and N .



Graph of areas Ai for different values of c and N



Circle patterns with c = 1.48 and 1.40

The value of N is 2.5 for each of these patterns.



Circle patterns with c = 1.32 and 1.24

The value of N is 2.5 for each of these patterns.



The dependence of the algorithm on N

(The value of c is 1.4 in the figures below.)

In each case the largest square is blue, and the second-largest is cyan.
The blue square is placed with its lower corners on the bounding circle,
and the cyan and blue squares are touching.

With N=1.50 there is plenty of room for squares with i¿1.

With N=1.10 if the blue square is placed near the center of the circle,
the algorithm halts; it continues if it gets past the first few placements.

With N=0.70 the bounding circle can barely hold squares 0 and 1 and
the algorithm halts because square 2 can’t be placed.

With N=0.30 even square 0 doesn’t fit.

N=1.50 N=1.10 N=0.70 N=0.30



Sample Patterns

In the following slides, we exhibit the robustness of the algorithm by
showing combinations of:

◮ Connectivity of the bounding region R .

◮ Non simply connected regions R .

◮ Non connected or non simply connected motifs.

◮ The motifs with multiple or even random orientations.

◮ Multiple, even all different, motifs.

◮ Periodicity for rectangular regions R .



Two regions forming a yin and yang

In this pattern, c = 1.47 and N = 3, with 92% fill;
it has 180◦ rotational color symmetry.



A pattern non-simply connected eye motifs

In this pattern, c = 1.20 and N = 3, with 56% fill;
only eyes with no contained eyes have pupils.



Rhombi in three orientations and colors

In this pattern, c = 1.52 and N = 8 with 91% fill.



A periodic pattern of randomly oriented peppers

In this pattern, c = 1.26 and N = 3 with 80% fill.



A pattern of the 10 digit motifs

In this pattern, c = 1.19 and N = 2 with 68% fill.



A pattern with the word ART as a motif

In this pattern, c = 1.15 and N = 3 with 53% fill.



A pattern with the word MATH as a motif

In this pattern, c = 1.26 and N = 2 with 50% fill.



A pattern with the words BUG and FIX as motifs

In this pattern, c = 1.155 and N = 2 with 62% fill.



YIN YANG latin letters filled with two motifs



A periodic pattern of different random blobs

In this pattern, c = 1.23 and N = 1 with 82% fill.



A 3D pattern of tori by Paul Bourke
Note that
some tori
are linked.



Future Work

◮ Since the algorithm seems to be so robust, it would be reasonable
to test it with new combinations of 2D regions and motifs.

◮ Though 1D patterns are not very interesting, and the motifs of 3D
patterns block views of the interior, still there may be interesting 3D
patterns to be discovered.

◮ We have displayed two patterns that are periodic, and thus tile the
plane. Such a tiling would have the simplest plane symmetry group
p1 (or o in Conway notation). It would also seem possible to create
locally fractal patterns having global symmetries of the other 16
plane symmetry groups using our techniques.

◮ There are a few things that can be proved mathematically about
these patterns, but there are a number of conjectures that have yet
to be proved — such as the non-halting of the 2D algorithm for
reasonable values of c and N .



Acknowledgements and Contact

We would like to thank Paul Bourke for his contributions to fractal
geometry and for his 3D work in particular. His web page is
http://paulbourke.net/

We would also like to thank Reza and all the other Bridges organizers.

Contact Information:
Doug Dunham
Email: ddunham@d.umn.edu
Web: http://www.d.umn.edu/~ddunham

John Shier
Email: johnpf99@frontiernet.net
Web: http://www.john-art.com/stat geom linkpage.html


