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Abstract

Centuries ago, Celtic knot patterns were used to decorhggores texts. Celtic knots are formed by
weaving bands in an alternating over-and-under patterngir@tly, these were finite patterns on the
Euclidean plane. Recently such patterns have also beemdnaspheres, thus utilizing a second of the
three “classical geometries”. We complete the process hib#ig Celtic knot patterns in hyperbolic
geometry, the third classical geometry. Our methods leaa daified framework for discussing knot
patterns in each of the classical geometries. Because gféugsion and many calculations required to
construct hyperbolic patterns, it is natural to generatd @atterns by computer. Thus, the patterns we
show are created by using computers, mathematics, ancediesthnsiderations.

I ntroduction

In about the 6th century Irish monks started using what wecsdiiCeltic knot patterns as ornamentation
for religious texts. The monks also created spiral patiég patterns, zoomorphic patterns, and decorated
lettering, but we will only consider knot patterns. FigureHbws a simple example of a knot pattern. The

Figure 1. A simple Celtic knot pattern

use of this kind of decoration went out of style in about théhl€entury, and the methods for creating
such patterns were lost as well. Subsequently, people whteddo make Celtic knot patterns had to copy
existing patterns. That is, until the early 1950’'s when @edBain invented a method for creating such
patterns [1].



In the late 1950’s, the Dutch artist M. C. Escher became tis¢ fierson to create hyperbolic art in
his four Circle Limit patterns. The pattern of interlocking rings near the edgeisfast woodcuSnakes
(Catalog Number 448 of [6]) also exhibits hyperbolic symmethe goal of this paper is to take a first step
toward combining Celtic knot art and hyperbolic geometrgus Celtic knot patterns will have been drawn
on each of the threelassical geometriesEuclidean, spherical (or elliptical), and hyperbolic geziry.
Celtic knot patterns have also been drawn on convex polghedrich are very closely related to spherical
patterns.

We will begin with a brief review of Celtic knots and hyperimofjeometry, followed by a discussion of
regular tessellations, which form the basis for our hypkcheltic knot patterns. Finally, we will develop
a theory of such patterns, showing some samples, and iedigactions of future work.

Cdltic Knot Patterns

Celtic knot patterns were used in the British Isles to deesstonework and religious texts from the sixth
through the tenth centuries. The methods used by monksdtecsach patterns have been lost. However, in
1951, George Bain published a method to create such patidrich he discovered after years of studying
those ancient patterns. Later, his son, lain Bain, puldisheimplified algorithm for making knot patterns
in 1986 [2]. Itis lain Bain’s method, as explained by Andrevassner [3], that we will discuss here.

The simplest knot patterns can be constructed from a reak@angrid of squares as shown in Figure 2.
The set of vertices of this grid, thought of as a graph, formdtarting point for lain Bain’s construction
and is called therimary grid by Glassner. The center points of the squares form the gert€ another
rectangular grid of squares as shown in Figure 3 (with iteeedextended to the boundary of the primary
grid). This is thesecondary grid Thetertiary grid, shown in Figure 4, is formed by the union of the primary
grid and the secondary grid. Thus, the tertiary grid is a gfigiquares of half the edge width of the squares
in the primary and secondary grids.

Figure 2: The primary grid for a Celtic knot conFigure 3: The secondary grid for a Celtic knot con-
struction. struction.

Diagonal lines are drawn in each of the interior small sguafethe tertiary grid using the lower-left
to upper-right diagonal for the upper-left interior squaaed then drawing the rest of the diagonals in an
alternating pattern of lower-left to upper-right and upfedt to lower-right diagonals as in Figure 5. These
diagonals will form what is called thaternal weaving.The internal weaving in this example will be a plait,
seen in the interior pattern of Figure 1.



Figure 4: The tertiary grid — the union of the priFigure 5: The diagonals in the interior of the tertiary
mary grid (heavy lines) and the secondary grid (lightid that form the internal weaving.
lines).

Diagonals are also placed in the small edge squares of ttiaryegrid in the same pattern but only
going halfway to the outer edge as shown in Figure 6. Theggodals form theexternal weavingwhich
will connect the ends of the internal weaving. Next, at eddh@tertiary grid points where four diagonals
meet, form two paths by connecting the lower-left to the wgjgght diagonal, and connecting the upper-left
to the lower-right diagonal. Following one of the paths,itego alternately above and below the paths it
crosses. This can be done in a consistent way by using onekirdssing on each row of crossing points
and then using the other kind of crossing on the next row, &guare 7.
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Figure 6: The outer diagonals that form the exterridbure 7. The over-and-under specification of the
weaving (in addition to the internal weaving). path.

Using knot theory terminology, the over-and-under patfermed by the diagonals is thregular pro-
jection (onto the plane) of a knot (a circle embedded in 3-spaceyrégular because only two strands cross
at a point. A “multi-knot” formed by more than one circle irsBace is called nk. There will be only one
path if the numbers of rows and columns of vertices in the aringrid are relatively prime. Most Celtic
knot patterns are the regular projections of knots: thekmnig one path. The path or paths serve as the



centerlines of the bands of the final pattern, which is fortmethickening the paths to form the bands. The
bands are usually thickened to a width equal to the distaateden them (so the standard band thickness
and the space between them are both equal to half the lendtie afiagonal of a primary grid square).
Figure 1 shows the final result for the example we have bealyisigt Some Celtic patterns use wider
bands with almost no space between them. Other patternsinsgoubled bands that follow the edges of
the standard thickness bands.

More General Patterns

The interior weaving of the pattern described above is vegular — it amounts to a tiling by alter-
nate rows of left- and right-handed crossings. These argssire enclosed in kite-shaped tiles, actually
square tiles tilted at 45 degrees, as shown in Figure 8 (&tbapthe center tile contains a non-crossing,
as discussed below). The top and bottom vertices of thesdiles are both primary grid vertices or both
secondary grid vertices; the left and right vertices of titeskare vertices of the other grid.

To obtain more general patterns, one can replace some of #ledcrossing” tiles by either of the
avoidingtiles shown in Figure 9. We call those tilesrtical or horizontalavoiding tiles because their paths
avoid either the vertical or horizontal axis of their kiteaped tile. Each such replacement may increase or
decrease the number of loops in a link by one, or it may leawenttmber unchanged. If, after replacing all
the crossing tiles by avoiding tiles, there is only one labjs called asnakeby Glassner [4].
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Figure 8: The kite-shaped tiles underlying a Celtiigure 9: The vertical (left) and horizontal (right)
knot pattern. avoiding tiles.

One can also create a hon-rectangular pattern by arrarfggngassing and avoiding tiles in any simply-
connected way and then joining the ends of the bands aroengetfimeter. One method for creating such
patterns by hand involves lightly drawing the primary andoselary grids and then drawing more darkly
some of the edges of either grid, with the rule that no darlesdgay cross. These dark edgeslzagier
edges that the band cannot cross. In Figure 8 there is a htalZmarrier edge (not shown) connecting the
left and right (secondary grid) vertices of the center K@éassner [3] and Christian Mercat [7] describe their
versions of this method. Barrier edges are cabeghklinesby Glassner, antbngitudinal andtransverse
walls by Mercat depending on whether they are edges of the primmasgamndary grid.

With the goal of generalizing these techniques to the hygiertplane, we next discuss hyperbolic
geometry, repeating patterns, and regular tessellatwnish will form the basis for hyperbolic Celtic knot
patterns.



Hyperbolic Geometry, Repeating Patterns, and Regular Tessellations

Among the classical geometries, the Euclidean plane, therspand the hyperbolic plane, the latter
is certainly the least familiar. This is probably due to thetfthat there is no smooth distance-preserving
embedding of the hyperbolic plane into ordinary 3-spacethase is for the sphere (and the Euclidean
plane). However, there amodelsof hyperbolic geometry in the Euclidean plane, which mustéfore
distort distance.

. S o

P A 2 B
0y EEU PR,
5 @) ‘ &2

%

o gﬂ‘ = &ﬂ‘ 9. ,“E CYZ
RS I e

Figure 10: The regular tessellatidi6, 4} in heavy Figure 11: An example of the hyperbolic parallel
lines with dots at its vertices, its dual tessellatigmroperty: a line/, a pointP not on/, and two lines
{4,6} in light lines, and common radii of th&gons throughP not meeting.

and4-gons in dashed lines.

One of these models is th@inca® circle modelwhich has two useful properties: (1) it is conformal
(i.e. the hyperbolic measure of an angle is equal to its Healh measure) — consequently a transformed
object has roughly the same shape as the original, and (@siehtirely within abounding circlein the
Euclidean plane — allowing an entire hyperbolic patternaalisplayed. In this model, the hyperbolic points
are the interior points of the bounding circle and the hyplkchines are interior circular arcs perpendicular
to the bounding circle, including diameters. For examgleha arcs are hyperbolic lines in Figure 10.

By definition, (plane) hyperbolic geometry satisfies alléx@ms of (plane) Euclidean geometry except
the Euclidean parallel axiom, which is replaced by its niegatFigure 11 shows an example of this hyper-
bolic parallel property: there is a liné, in Figure 10 (the vertical diameter), a poifit, not on it, and more
than one line througl® that does not interseét

Because distances must be distorted in any model, equathotjmedistances in the Poincaré model are
represented by ever smaller Euclidean distances towaretipe of the bounding circle (which is an infinite
hyperbolic distance from its center). All the curvilineandagons (actually regular hyperbolic hexagons) in
Figure 10 are the same hyperbolic size, even thought thenepresented by different Euclidean sizes.

A repeating patterrin any of the classical geometries is a pattern made up ofroeng copies of a
basic subpattern anotif. The motif for the pattern of Figure 10 is a curvilinear rigtidngle with a dashed
hypotenuse and thick and thin lines for legs. Also, we assilnaea repeating pattern fills up its respective
plane. It is useful that hyperbolic patterns repeat in otdeshow their true hyperbolic nature.
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An important kind of repeating pattern in any of the cladsgmometries is theegular tessellatiorby
regularp-sided polygons, op-gons meetingg at a vertex; it is denoted by the Schlafli symKel ¢}. We
need(p — 2)(¢ — 2) > 4 to obtain a hyperbolic tessellation;(ip — 2)(¢ —2) =4 or (p — 2)(¢ — 2) < 4,
one obtains tessellations of the Euclidean plane and therspfespectively. Figure 10 shows the hyperbolic
tessellation{6,4} in heavy lines with &-gon centered in the bounding circle (the center of the bimgnd
circle is not a special point in the Poincaré model, it jugtears so to our Euclidean eyes). Figure 10 also
shows the hyperbolic tessellatign, 6} in light lines with one of its vertices centered in the boungdcircle.

The dashed lines in Figure 10 do not form a regular tessatiakiut wherp = ¢ the analogous dashed lines
form the regular tessellatiofit, p}.

If we assume for simplicity thgt > 3 andq > 3, there are five solutions to the “spherical” inequality
(p—2)(g —2) < 4: {3,3}, {3,4}, {3,5}, {4,3}, and{5,3}. These tessellations may be obtained by
“blowing up” the Platonic solids: the regular tetrahedrtme octahedron, the icosahedron, the cube, and
the dodecahedron, respectively, onto their circumsailsipheres. In the Euclidean case, there are three
solutions to the equalityp — 2)(q — 2) = 4: {3,6}, {4,4}, and{6, 3}, the tessellations of the plane by
equilateral triangles, squares, and regular hexagonstere infinitely many solutions to the hyperbolic
inequality (p — 2)(¢ — 2) > 4. This is summarized in Table 1 below.
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Table 1. The relationship between the valuespaindq, and the geometry of the tessellation ¢ }.

For each tessellatiofip, ¢}, its dual tessellations {¢, p}, whose vertices are at the centers of the
gons of{p, ¢} and whose edges are perpendicular bisectors of the eddes @f. Figure 10 shows the
tessellation{6, 4} in heavy lines and its dual tessellati¢s, 6} in thin lines. Of course the dual of the dual
of a regular tessellation is just the original tessellatiip = ¢, the tessellation is self-dua{:3, 3} is the
spherical version of the regular tetrahedrffy,4} is familiar Euclidean tiling by squares, afg, 5}, {6,6},
{7,7},... are hyperbolic.

This completes our discussion of hyperbolic geometry, atpg patterns, and regular tessellations.
Next, we use these concepts to develop a theory of hyperBeliic knot patterns, which is actually valid
in all three of the classical geometries.



A Theory of Hyperbolic Celtic Knot Patterns

As we saw above, the method for creating knot patterns thatdeaeloped by lain Bain and others is
based on the regular tessellation of the Euclidean plangmgres. We extend that method to one based on
any regular tessellation of one of the classical geometfiks tessellatiodp, ¢} itself serves as the primary
grid, its dual,{q, p}, defines the secondary grid, and their union is the tertiaig. gn Figure 10, where
p = 6 andq = 4, the primary grid is shown in heavy lines and the secondadyigithin (solid) lines. The
dashed lines in Figure 10 define a tessellation by kite-ghtijgs — rhombuses with vertex anglesaf/p,

27 /q, 2w /p, and 27 /q (with vertices alternately at the centers and verticep-gbns of the tessellation
{p,q}). If one starts with the Euclideaft, 4} tessellation, the rhombuses are actually squares tilted at
45-degree angle, as shown in Figure 8.

Celtic knot patterns have two characteristics: (1) no mbaa ttwo bands cross at a point, and (2) any
one band goes alternately over and under other bands thasges. Such a pattern can be obtained if all the
rhombuses are filled in only with left crossing tiles or onlithwright crossing tiles. Looking at a rhombus
from a primary grid vertex, if the nearest band coming from tight is on top, it is aight crossing tile
otherwise it is deft crossing tile both kinds are shown in Figure 12 (the rhombuses shown arertas to
the right of the center of the bounding circle in Figure 10jgufe 13 shows a complete pattern composed
of right crossing tiles based on t{é, 5} tessellation. Such a Celtic pattern is callegbgular weavingor
plait. The central pattern in Figure 1 is another example — of taedsird Euclidean weaving.

Figure 12: Aleft crossing tile (left) and a right cross-igure 13: A regular weaving or plait based on the
ing tile (right), with dots at the primary grid vertices{4, 5} tessellation.

The bands of a regular weaving based on the tessell§tion} follow the edges of theniform tessel-
lation (p.q.p.q) (also calledArchimedearor semiregulartilings by some authors). The edges pfg(p.q)
are formed by connecting the midpoints of adjacent edgelegf-gons of{p, ¢}. Those midpoints serve
as the vertices ofp(q.p.q), each of which is surrounded bypagon, ag-gon, ap-gon, and a-gon (which
explains the notation). Figure 14 shows the uniform tea8etl (, 5,4, 5) underlying the regular weaving
knot pattern of Figure 14. Singegon edge midpoints are algegon edge midpoints in the dual tessellation
{q,p}, aregular tessellation and its dual produce the same mgetaving — which is not surprising since
p andgq play symmetrical roles inp(q.p.q).



There are three regular spherical weavings, which are barséte self-dual tessellatiof8, 3}, and on
the two pairs of duals{3,4} and{4, 3}, and{3,5} and{5,3}. The weaving based of8, 3} traces the
edges of the “uniform” tessellatior8.8.3.3), which is actually the regular tessellatigf, 4}, the blown-
up version of the octahedron. There is a band in each of thrgaalty perpendicular planes through the
center of the sphere containing thi& 3}. These three bands are linked, forming Borromean ringsssakx
shows such a weaving based on a cube rather than an octal{&tyare 10a of [5]). The octahedron is
the intersection of the tetrahedrdB, 3} and its dual, which together form the stella octangula. o, fdne
regular weaving based on any self-dual tessellafjap} traces the edges of the regular tessellafiont }.
The weaving based on the pd#, 4} and{4, 3} traces the edges of uniform tessellati@ni(3.4), which is
the spherical version of the cuboctahedron. Last, the wgévased on the pai3, 5} and{5, 3} traces the
edges of uniform tessellatio3.6.3.5), which is the spherical version of the icosadodecahed@assner
shows a version of this weaving in Figure 18 of [5].

There are only two regular Euclidean weavings, which aredbas the self-dual tessellatigr, 4}, and
on the dual paif3,6} and{6,3}. The weaving based ofi, 4} is just the standard Euclidean weaving seen
in the center of Figure 1, which is the basis for most Celtiotkratterns. The weaving based {416} and
{6, 3}, with its triangular and hexagonal holes, is sometimes 8e#re caning for the seats of chairs.

There are infinitely many regular hyperbolic weavings— dasher on the self-dual tessellatiofys p }
for p > 5, or on the dual pair$p, ¢} and{q,p}, wherep # ¢ and(p — 2)(q¢ — 2) > 4. Figures 15 and 13
show the weavings based on the self-dial } tessellation and on the pdit, 5} and{5,4}, respectively.

Figure 14: The uniform tessellation.}.4.5) under- Figure 15: The regular weaving based on the tessel-
lying the regular weaving of Figure 13. lation {5, 5}.

More general Celtic knot patterns may be obtained by repiasome of the crossing tiles of a regular
weaving withavoiding tiles Figure 16 shows the two kinds of avoiding tiles, which argidguished by
the diagonal of the tile rhombus that their paths avoid (aSigure 12, the rhombuses shown are the ones
to the right of the center of the bounding circle in Figure;1Bigure 9 shows the avoiding tiles for the
standard Eulidean weaving (based{an4}). One of the diagonals of each rhombus is an edge from the
underlying tessellatiokip, ¢}, and the other diagonal is an edge from the dual tessell&tion}. Figure 17
shows a pattern of alternating right crossing tiles argbn edge avoiding tiles. Figure 18 shows a pattern



Figure 16: Ap-gon edge avoiding tile (left) and d&igure 17: A Celtic knot pattern of right crossing
g-gon edge avoiding tile (right), with dots at the priiles andp-gon edge avoiding tiles.
mary grid vertices.

of alternating right crossing tiles amdgon edge avoiding tiles.

One of the rules of Celtic knot patterns is that paths canwoidaboth diagonals of a rhombus (there
would be no way to connect the ends the paths coming intoiteat Thus, if we want to construct Celtic
knot patterns from rhombus tiles, our collection of badiestis complete, consisting of the two kinds of
crossing tiles and the two kinds of avoiding tiles.

It is possible to further generalize the methods above ttydpmon-rhombic quadrilateral tiles. For any
quadrilateral, there are only four ways to connect ends pfiaoming into it across each of its four sides:
the two kinds of crossing configurations and the two kindswoiiding configurations. Glassner has used
non-rhombic quadrilaterals to construct several of hisgpas in [5]. As an example, if we have a pattern of
triangles upon which we would like to draw a knot pattern, wald first subdivide the triangles into three
guadrilaterals by connecting the triangle’s center to thdpwints of its sides.

We will apply this method to the construction of what we ¢@dltic ring patterns— rings interlocked
in the over-and-under pattern characteristic of CeltictknoWe start by subdividing thg-gons of the
tessellation{p, ¢} into p isosceles triangles with angles /p, 7/q, andw/q, as shown in the centralgon
in Figure 19 (wherep = 6 andq = 4). Then we subdivide each triangle into three quadrilase¢sthown
for one of the isosceles triangles in Figure 19). Finally,phace a crossing tile in each of the quadrilaterals,
producing the final ring pattern of Figure 19. Note that thessing is pushed as far as possible toward one
vertex of the quadrilateral. Figure 19 shows the pattermtafriocking rings that Escher used near the edge
of his last woodcutSnakegCatalog Number 448 of [6]).

This finishes our discussion of the theory of hyperbolic iC&itot patterns and the methods for creating
them. Of course, the theory and methods also apply to eattedhtee classical geometries as well. In the
final section, we indicate directions of future work.

Future Work

We have presented a theory of Celtic knot patterns and mettooctreating such patterns in each of
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Figure 18: A Celtic knot pattern of right crossingigure 19: An interlocking “Celtic ring” pattern

tiles andg-gon edge avoiding tiles. showing part of the underlying6,4} and some of
the triangles used in the construction, with one of
them subdivided into three quadrilaterals.

the three classical geometries. Some natural directiohgu® work include extensions to hyperbolic knot
patterns not based on regular tessellations, and the ameatihyperbolic versions of other kinds of Celtic
patterns, such as key patterns, spiral patterns and zobinsrp
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