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Abstract

Starting many centuries ago, artists in a number of cultures have created spiral patterns on flat surfaces,
and even on spheres. Mathematicians have given precise definitions of spirals in the Euclidean plane and
have studied them for centuries. Yet no one seems to have studied spirals in the hyperbolic plane, and
until recently, no one had created hyperbolic spiral patterns. In this paper, we investigate both areas.

1 Introduction

This paper has three goals. The first is to develop a mathematical theory of hyperbolic spirals. This is done
in Section 2 where hyperbolic spirals are compared with their Euclidean analogues. Figures 1 and 2 show
an Archimedean spiral in the Euclidean plane and its analogous hyperbolic spiral.

Figure 1: The Archimedean spiral � � ��. Figure 2: The hyperbolic Archimedean spiral.

The second goal is to show spiral patterns in the hyperbolic plane inspired by Celtic and Islamic Eu-
clidean spiral patterns, which is done in Section 3. In Section 4, we combine these endeavors into our third
goal by creating repeating hyperbolic patterns based on hyperbolic spirals.
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2 A Theory of Hyperbolic Spirals

To display a hyperbolic spiral, we must first choose a (Euclidean) model of hyperbolic geometry, since
as has been known for 100 years, there is no smooth distance-preserving embedding of hyperbolic geometry
in Euclidean space. The Poincaré circle model suits our needs best because (1) it lies entirely within a
bounding circle in the Euclidean plane (allowing the entire hyperbolic plane to be shown at once), and (2)
it is conformal — the hyperbolic measure of an angle is equal to its Euclidean measure. In this model,
the hyperbolic points are the interior points of the bounding circle and the hyperbolic lines are interior
circular arcs perpendicular to the bounding circle, including diameters. Distance is measured in such a way
that equal hyperbolic distances are represented by ever smaller Euclidean distances toward the bounding
circle. For convenience, we assume that the bounding circle is a unit circle centered at the origin of the
Euclidean plane, and that the origin of the hyperbolic plane is represented by the Euclidean origin. In fact,
if �� is the hyperbolic distance from the origin then the Euclidean distance from the origin, �� is given by

�� � ��������, where ���� is the hyperbolic tangent function: ����� � �����
����� � ���������	

���
�����	 �

Most of the common Euclidean spirals are given in polar coordinates by equations of the form: � � ����.
So one natural way to define a corresponding hyperbolic spiral (in hyperbolic polar coordinates) would be:

�� � �����

which would then be represented as: �� � ���������� in the Poincaré model. One of the simplest and
most widely drawn Euclidean spirals is the Archimedean spiral given by: � � ��. Two turns of this spiral
are shown in Figure 1 where � � ��		, and 
 � � � 		. In our pictures of Euclidean spirals, we show
the unit circle (in a dashed arc) for comparison with the corresponding hyperbolic spiral, which of course
must be contained within the bounding circle. Figure 2 shows our hyperbolic version of this spiral, given by
�� � ��������.

More generally, a power spiral is given by the equation: � � ���, where we assume � 
 
. The
Archimedean spiral is the special case where � � �. If � � ���, we obtain another special case, the Fermat
spiral. Figures 3 and 4 show two turns of the Fermat spiral and its hyperbolic counterpart.

Figure 3: The Fermat spiral � � �
�
�. Figure 4: The hyperbolic Fermat spiral.
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If � � ��, we obtain the reciprocal spiral. It is also often called the hyperbolic spiral since � � ���
is the equation of a hyperbola (if � and � are interpreted as Cartesian coordinates), but we wish to avoid
confusion with the other use of the word “hyperbolic” in this paper, so we use the term “reciprocal” instead.
Figures 5 and 6 show three turns of the reciprocal spiral and its hyperbolic counterpart. Note that the
reciprocal spiral (but not its hyperbolic counterpart) has a horizontal asymptote � � �.

Figure 5: The reciprocal spiral � � ���. Figure 6: The hyperbolic version of the reciprocal
spiral.

If � � ����, we obtain the lituus curve, � � ��
�
�. Figures 7 and 8 show three turns of the lituus

and its hyperbolic counterpart. The lituus is not technically a spiral since its curvature is not a (strictly)
increasing or decreasing function of its arc length, as can be seen on the right of Figure 7 by the inflection
in the “tail”, which is asymptotic to the �-axis. The inflection point occurs where � �

�
� and � � ���

radian (about �
���Æ). Similarly, the circle � � ��� � � (� � 
) is not technically a spiral either, since its
curvature is constant.

The equation of a exponential spiral is given by the equation: � � �
�, where we assume � 
 
, and

 
 �. It is also often called logarithmic spiral. The golden spiral is the special case in which 
 � � 	��,
where � � �


�



	 is the golden section. Figures 9 and 10 show two turns of the golden spiral and its
hyperbolic counterpart. It is related to the following construction. Start with a horizontal golden rectangle
and construct a square on top of it, producing a bigger (vertical) golden rectangle. Construct a square
on the left side of the new golden rectangle, producing a bigger (horizontal) golden rectangle. Continue
successively constructing ever bigger squares on ever bigger golden rectangles on the top, left, bottom, and
right sides in that sequence. A golden spiral can be passed through the diagonal corners of the squares
— that is, through the bottom right and top left of the first square, which is the top right of the second
square, then through the bottom left of the second square, which is the top left of the third square, etc. This
construction is discussed by Coxeter [Coxeter1], and Swimmer discussed related spirals in his Bridges 2000
paper [Swimmer1].

The exponential spiral is also called the equiangular spiral since rays from the origin cut it at the same
angle �. In fact the equation can be rewritten as � � ��� ���	 (i.e. 
 � ����	). As can be seen in Figure
10, our hyperbolic counterpart of the exponential spiral is not an equiangular spiral. But since the Poincar é
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Figure 7: The lituus curve � � ��
�
�. Figure 8: The hyperbolic version of the lituus curve.

Figure 9: The golden spiral � � � 	���. Figure 10: The hyperbolic version of the golden
spiral.
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model is conformal, the Euclidean equation of a hyperbolic equiangular spiral must itself just be the equation
of a Euclidean equiangular spiral. Hence the equation of a hyperbolic equiangular spiral in hyperbolic polar
coordinates is just �� � ��������
��. So to see a hyperbolic equiangular spiral, one can just look at that
part of the spiral in the interior of the unit circle in Figure 9. Note that unlike the Euclidean case, � cannot
increase indefinitely — there is a limiting angle, given by �� � � ���
 � (from solving �
�� � �).

Finally, we mention that spherical equiangular spirals are called loxodromes or rhumb lines. A lox-
odrome is the path one would travel on a sphere by keeping a constant heading, i.e. a path that makes a
constant angle with lines of latitude (or with lines of longitude). A loxodrome is the stereographic projec-
tion of a Euclidean equiangular spiral onto the sphere.

This finishes our discussion of the mathematics of hyperbolic spirals. In the next section, we look at
spiral patterns from two cultures and their hyperbolic counterparts.

3 Celtic and Islamic Spiral Patterns

The art of many cultures has been enriched by spiral patterns. We will examine two such patterns, one
from Celtic art and one from Islamic art, and show hyperbolic versions of each pattern. It seemed to have
been common in Celtic art to form patterns from � pieces of a spiral like Fermat’s spiral arranged around a
center to form a circular “medallion” (popular values of � were 2, 3, and 4). Then copies of the medallion
were arranged in a (possibly) repeating Euclidean pattern with their spiral pieces connected. Figure 11
shows such a pattern with � � �, and �-fold rotation centers between the medallions. Figure 12 shows a
related hyperbolic pattern based on the Fermat spiral, with � � � and 	-fold rotation centers between the
medallions.

Figure 11: A Celtic spiral pattern. Figure 12: A hyperbolic version of Figure 11.

Figure 13 shows an Islamic spiral pattern from the Alhambra. It is a Euclidean tessellation by angular
pinwheel medallions with �-fold chiral symmetry. Firgure 14 shows a hyperbolic tessellation by similar
angular pinwheels with �-fold rotation centers. Figures 13 and 14 were shown in Bridges 2001 [Dunham5].
The art of several cultures includes spiral patterns made up of “medallions” of spiral pieces, which are then
linked together to make a repeating Euclidean pattern. We have shown simple examples from two cultures.
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Figure 13: An Islamic spiral pattern. Figure 14: A hyperbolic version of Figure 13.

Spiral patterns are often colored and elaborated, almost to the point of obscuring the original spirals. In the
next section, we will look at some simple hyperbolic spiral patterns.

4 Hyperbolic Patterns of Spirals

The patterns in Figures 11 and 12 are not “pure” spiral patterns since the spirals branch at one point, forming
two arms that connect to two adjacent spirals. Figure 15 below shows a spiral pattern with no such branching.
This pattern is based on the regular tessellation �4,5�. Figure 16 shows the tessellation �4,5� (in dark

Figure 15: A spiral pattern based on the Fermat spi-
ral and the tessellation �4,5�.

Figure 16: The relation between the tessellation
�4,5� and the pattern of Figure 15.

lines) overlaying the pattern of Figure 15 (in light lines). In general, the symbol ��� �� denotes the regular
tessellation by regular �-sided polygons with � of them meeting at each vertex. Figures 12 and 14 are
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based on the tessellations �6,4� and �7,3� respectively. Regular tessellations are discussed in more detail in
[Dunham4].

Figure 17 shows an exponential spiral pattern with the spiral pieces connected at the midpoints of the
edges of the �4,5� tessellation. Figure 18 shows a pattern based on the spiral of Figure 17 which has been
slightly contracted so that the spiral pieces meet at vertices of the �4,5� tessellation.

Figure 17: An exponential spiral pattern based on
the tessellation �4,5�.

Figure 18: An exponential spiral pattern with spiral
pieces meeting at vertices of the tessellation �4,5�.

We finish by showing spiral patterns based on the Archimedean spiral and the reciprocal spiral. Figure
19 shows an Archimedean spiral pattern based on the �6,4� tessellation. Figure 20 shows a reciprocal spiral
pattern based on the �4,5� tessellation with spiral pieces meeting at tessellation vertices.

Figure 19: An Archimedean spiral pattern based on
the tessellation �6,4�.

Figure 20: A reciprocal spiral pattern with spiral
pieces meeting at vertices of the tessellation �4,5�.
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5 Conclusions and Future Work

We have surveyed some of the natural hyperbolic spirals, and have used pieces of them to construct repreat-
ing hyperbolic patterns. It would seem possible to construct hyperbolic versions of Krawczyk’s spirolaterals
[Krawczyk1, Krawczyk2]. It would also seem possible to construct hyperbolic spiral tilings analogous to
those of Gailiunas [Gailiunas1]. Although Euclidean spirals have been studied extensively, there is probably
more work to be done on spherical spirals too. In fact, given the large literature on the subject of spirals,
there would seem to be numerous directions for further research.
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