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Abstract

M.C. Escher used the Poincaré model of hyperbolic geometry when he created his four “Circle Limit” patterns. The
third one of this series, Circle Limit III, is usually considered to be the most attractive of the four. In Circle Limit
III, four fish meet at right fin tips, three fish meet at left fin tips, and three fish meet at their noses. In this paper, we
show patterns with other numbers of fish that meet at those points, and describe some of the theory of such patterns.

1. Introduction

Figures 1 and 2 below show computer renditions of the Dutch artist M.C. Escher’s hyperbolic patterns Circle
Limit I and Circle Limit III respectively. Escher made criticisms of his first attempt at creating hyperbolic art,

Figure 1: A rendition of Escher’s Circle Limit I. Figure 2: A rendition of Escher’s Circle Limit III.

Circle Limit I. However, he later redressed those deficiencies in Circle Limit III. In a letter to the Canadian
mathematician H.S.M. Coxeter, Escher wrote:

Circle Limit I, being a first attempt, displays all sorts of shortcomings... There is no continuity,
no “traffic flow,” nor unity of colour in each row... In the coloured woodcut Circle Limit III, the
shortcomings of Circle Limit I are largely eliminated. We now have none but “through traffic”



series, and all the fish belonging to one series have the same colour and swim after each other
head to tail along a circular route from edge to edge... Four colours are needed so that each row
can be in complete contrast to its surroundings. ([6], pp. 108-109, reprinted in [4])

Escher had been inspired to create his “Circle Limit” patterns by a figure in one of Coxeter’s papers
[2]. That figure “gave me quite a shock” according to Escher in a letter to Coxeter, since the figure showed
Escher how to make “circle-limit” patterns. Some of this important Coxeter-Escher interaction is recounted
in [3].

In turn, Coxeter, was later inspired to write two papers explaining the mathematics behind Escher’s
Circle Limit III [3, 4]. In the same issue of The Mathematical Intelligencer containing Coxeter’s second
paper, an anonymous editor wrote the following caption for the cover of that issue, which showed Escher’s
Circle Limit III:

Coxeter’s enthusiasm for the gift M.C. Escher gave him, a print of Circle Limit III, is under-
standable. So is his continuing curiosity. See the articles on pp. 35–46. He has not, however
said of what general theory this pattern is a special case. Not as yet. [1]

It seems that Coxeter did not describe such a general theory, or at least did not publish it. The goals
of this paper are to provide the beginnings of a general theory and to show some sample patterns. Before
developing our theory, we start with a short review of some hyperbolic geometry. With this background, we
can then present a general theory of “Circle Limit III” fish patterns. Next, we examine special cases that
are more amenable to calculation, showing sample patterns along the way. Finally, we indicate directions of
further research.

2. Hyperbolic Geometry

Escher used the Poincaré disk model of hyperbolic geometry for his “Circle Limit” patterns. In this model,
Euclidean objects are used to represent objects in hyperbolic geometry. The points of hyperbolic geometry
in this model are just the (Euclidean) points within a Euclidean bounding circle. The hyperbolic lines
are represented by circular arcs orthogonal to the bounding circle (including diameters). For example, the
backbone lines and other features of the fish lie along hyperbolic lines in Figure 1. The hyperbolic measure
of an angle is the same as its Euclidean measure in the disk model — we say such a model is conformal — so
all fish in a “Circle Limit III” pattern have roughly the same Euclidean shape. We note that equal hyperbolic
distances correspond to ever smaller Euclidean distances toward the edge of the disk. For example, all the
black fish in Figure 1 are hyperbolically the same size, as are the white fish; all the fish in Circle Limit III are
the same (hyperbolic) size. The Poincaré disk model was appealing to Escher since an infinitely repeating
pattern could be shown in a bounded area and shapes remained recognizable even for small copies of the
motif, as a consequence of conformality. Escher was more interested in the Euclidean properties of the disk
model than the fact that it could be interpreted as hyperbolic geometry.

One might guess that the backbone arcs of the fish in Circle Limit III are also hyperbolic lines, but this
is not the case. Even Escher believed the backbone arcs were orthogonal to the bounding circle, but he
accurately drew them as non-orthogonal circular arcs. They are equidistant curves in hyperbolic geometry:
curves at a constant hyperbolic distance from the hyperbolic line with the same endpoints on the bounding
circle. For each hyperbolic line and a given distance, there are two equidistant curves, called branches,
at that distance from the line, one each side of the line. In the Poincaré disk model, those two branches
are represented by circular arcs making the same (non-right) angle with the bounding circle and having the
same endpoints as the corresponding hyperbolic line. Equidistant curves are the hyperbolic analog of small
circles in spherical geometry: a small circle of latitude in the northern hemisphere is equidistant from the
equator (a great circle or “line” in spherical geometry), and has a corresponding small circle of latitude in



the southern hemisphere the same distance from the equator. We usually do not use the term “equidistant
curve” in Euclidean geometry since parallel lines have that property (and are not curved).

There is a regular tessellation, {m,n} of the hyperbolic plane by regular m-sided polygons meeting
n at a vertex provided (m − 2)(n − 2) > 4. Escher used the regular tessellations {6, 4} and {8, 3} as
the basis of his Circle Limit patterns ({6, 4} for Circle Limit I and IV, and {8, 3} for Circle Limit II and
III). Figure 3 shows the tessellation {8, 3} (heavy lines) superimposed on the Circle Limit III pattern. As
one traverses edges of this tessellation, alternately going left, then right at each vertex, one obtains a zig-
zagging path called a Petrie polygon. The midpoints of the edges of a Petrie polygon lie on a hyperbolic
line by symmetry. The vertices of the Petrie polygon lie alternately on each of the two equidistant curve
branches associated to that line — this is shown in Figure 4 with the Petrie polygon drawn with thick lines,
the “midpoint” line and the equidistant curves drawn in a medium line, all superimposed on the {8, 3}
tessellation (lightest lines). Escher only used one branch for fish backbones from each pair of equidistant
curves in Circle Limit III. If he had consistently used the other branch, the pattern would have been rotated
about the center by 45 degrees.

Figure 3: The tessellation {8, 3} underlying the Cir-
cle Limit III pattern.

Figure 4: A Petrie polygon (heavy), a hyperbolic
line and two equidistant curves (medium) associated
to the {8, 3} tessellation (lightest lines).

3. The General Theory of “Circle Limit III” Patterns

If we examine Circle Limit III, we see that four fish meet at right fin tips, three meet at left fin tips, and three
meet at their noses (and tails). We generalize these numbers to patterns of fish with p fish meeting at right
fins, q fish meeting at left fins, and r fish meeting at their noses. We will label such a pattern (p, q, r). So
Circle Limit III would be called (4, 3, 3) in this notation. One could conceptually “reflect” all the fish of a
(p, q, r) pattern across their backbone lines to obtain a (q, p, r) pattern, but this is a true hyperbolic reflection
only when p = q.

One restriction that we make is that r be odd so that the fish swim head-to-tail, in order to achieve
“traffic flow.” Also, by examining the left fins of Circle Limit III, we also require that p and q be at least
3, since two fins could not have tips that meet. And of course r must be at least 3 too (since r is odd and



greater than 1). Consequently, the “smallest” example of such a pattern is (3, 3, 3), realized by Escher in his
Notebook Drawing 123 [8, Page 216]. This (3, 3, 3) pattern is based on the regular tessellation {3,6} of the
Euclidean plane by equilateral triangles, each triangle containing three half-fish. It is interesting that this
simpler drawing is dated several years after the much more complicated Circle Limit III. We also note that
we do not consider Notebook Drawing 122 to be a valid “Circle Limit III” pattern, since, as in Circle Limit
I, fish meet “head-on”, not head-to-tail. This pattern is based on the Euclidean tessellation of squares, each
square containing four half-fish, and would be denoted (4, 4, 2) if we allowed r to be even.

There is another natural tessellation that we can associate with the Circle Limit III pattern, obtained by
dividing the octagons in Figure 3 into four “kites” — convex quadrilaterals with two pairs of adjacent equal
sides. Each kite can serve as a fundamental region for the pattern since it contains exactly the right fish
pieces to assemble one complete fish. Figure 5 shows this kite tessellation superimposed on the Circle Limit
III pattern. In general for a (p, q, r) pattern, one can use a kite-shaped fundamental region with vertex angles
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< 1. Figure 6 shows the kite tessellation corresponding to the (4,3,5) pattern and

containing fish backbones along equidistant curves.

Figure 5: The kite tessellation superimposed on the
Circle Limit III pattern.

Figure 6: The kite tessellation (lighter lines) of the
(4,3,5) pattern, with fish backbones (darker arrows)
along equidistant curves.

4. Special Cases

There are two special cases that can be analyzed in more detail. The first case we consider is when p = q,
so that the fish are symmetric. In this case the backbone curves are (hyperbolic) lines. When p 6= q and the
fish are not symmetric, their backbone lines bend away from the side with the larger number of fish meeting
at a fin tip. For the second special case, we assume that q and r are both 3.

In the first case, the fish are symmetric by reflection across the hyperbolic backbone lines. Thus we can
use half a fish for the motif and an isosceles triangle that is half of a kite (with angles 2π
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) for



the corresponding fundamental region. Figure 7 below shows a (4, 4, 3) pattern, but with angular fish in the
style of Circle Limit I. Escher’s Notebook Drawing 123, mentioned above, is the “smallest” example of this
special case, since it is a (3, 3, 3) pattern.

Figure 8 is a fin-centered version of Figure 7 that answers most of Escher’s criticisms of his Circle Limit
I pattern. This pattern was obtained by the following sequence of steps. First, two of the noses of the white
fish (and tails of the black fish) were made narrower so that three white fish could also meet nose-to-nose.
This solved the “traffic flow” problem (and made the white fish congruent to the black fish). The fish would
now all swim the same direction along a backbone line, but would be alternately colored black and white.
To solve this “unity of colour” problem we use the minimum number of colors, three, to re-color the fish,
yeilding the pattern of Figure 7. Finally, Figure 8 is derived from Figure 7 by hyperbolically translating a 4-
fold fin meeting point to the center of the bounding circle. Fortunately Escher did not follow this sequence,
so that we have the beautiful Circle Limit III pattern instead.

Figure 7: A (4,4,3) pattern derived from the Circle
Limit I pattern.

Figure 8: A (4,4,3) pattern in the style of Circle
Limit I (derived from Figure 7).

In the second special case, when q = r = 3, we can calculate the angle, ω, that the “backbone”
equidistant curves make with the bounding circle. Again, Escher’s Notebook Drawing 123, a (3, 3, 3) pattern,
is the “smallest” example of this special case too. Coxeter computed ω for Circle Limit III (p = 4) in two
ways: first by using hyperbolic trigonometry [3], and later by using Euclidean techniques [4]. We follow
Coxeter’s first method to calculate ω in terms of p. First, we note that the regular tessellation {2p, 3} can be
superimposed on a (p, 3, 3) pattern just as in Figure 3 (with nose and left fin points at alternate vertices of
the 2p-gons). We next make additions to Figure 4 to obtain Figure 9: we add lines ON,OM , and NL, and
label points L,M,N, and O. Angles 6 OMN and 6 MLN are right angles.

We wish to calculate the distance NL (an overline above a line segment denotes its hyperbolic length)
from the left equidistant curve to hyperbolic line passing through L and M . This distance is related to angle
of parallelism, the angle between NL and the hyperbolic line N∞ (not shown — it is different than the
equidistant curve going through N and ∞ which is shown and clearly makes a right angle with NL). If α
denotes the angle of parallelism, this important relation in hyperbolic geometry is: cos α = tanhNL [7,
Page 402]. It turns out that angle of parallelism α is the same as the angle of intersection ω of the bounding



circle with the equidistant curve at that distance from its hyperbolic line. Thus we have:

cos ω = tanhNL

We can calculate NL by solving the two right triangles 4OMN and 4MLN using standard formulas
from hyperbolic trigonometry [7, Page 403, Theorem 10.3]. First, we use 4OMN to compute MN by:
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Next, we use 4MLN to compute LN from MN by:
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using the relation tanh2 = 1 − 1/ cosh2. Finally, can combine these equations to obtain:
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Mathematics Awareness Month poster and whose background is described in [5].
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Figure 9: Two right triangles MON and MLN
added to Figure 4 used to calculate ω.

Figure 10: A (5, 3, 3) fish pattern.

We can also take the limit as p goes to infinity and obtain the limiting equation cos ω = 1/4 or ω ≈
75.52◦ . Thus ω lies in the interval (cos−1(1

4
), π

2
] for finite p, q, and r. Of course we cannot actually draw a

pattern with an infinite number of fish meeting in the center of the disk (but an infinite number of fish fins
can meet on the bounding circle, as indicated below).



The concept of (p, q, r) is symmetric in p and q, of course. Figures 11 and 12 below show examples
in which p = r = 3. We have put the right fin tips at the center of the disk in agreement with Escher’s
Circle Limit III. Figure 11 shows a (3, 4, 3) pattern related to Circle Limit III except that the numbers of fish
meeting at left and right fin tips have been switched. Figure 12 shows a (3, 5, 3) pattern that bears the same
relationship to our Figure 10 above. Note that these figures are not just translations (or reflections) of Circle
Limit III and Figure 10, since the number of fish meeting at right (and left) fins is different.

There are two interesting aspects of (3, q, 3) patterns. First, the three backbone lines closest to the center
have “straightened out” into chords of the bounding circle, resulting in a Euclidean equilateral triangle of
backbones in the center. When I first created such a pattern (by translating to the origin a left fin meet-
ing point of the Circle Limit III pattern) about 20 years ago, I told Coxeter that I was astonished by this
phenomenon. He replied (words to the effect):

Well, you shouldn’t have been. Any triangle made up of three congruent circular arcs meeting
at 60-degree angles must obviously be a Euclidean equilateral triangle.

It may be possible to exploit the simple geometry of these (3, q, 3) patterns to compute ω more easily.

Figure 11: A (3,4,3) pattern related to Escher’s Cir-
cle Limit III.

Figure 12: A (3,5,3) pattern related to our pattern of
Figure 10.

A second aspect of (3, q, 3) patterns is that we can conceive of taking the limit of them as q tends to
infinity. As q goes to infinity, the left fin tips would get farther and farther from the center of the disk, until
in the limit, they would be on the bounding circle. It would theoretically be possible to draw such a pattern,
but our current software can only handle finite values of p, q and r.

5. Conclusions and Future Work

We have described a general theory of (p, q, r) “Circle Limit III” patterns and shown some examples. It
would seem to be a worthy goal to find a general formula for ω in terms of p, q, and r. With current
software, (p, q, r) patterns can only be created one at a time. It would certainly be useful to have a program
that could automatically create a new (p, q, r) pattern with different values of p, q, and r from an existing



pattern. Another interesting direction would be to investigate (and draw) (p, q, r) patterns with one of q, or r
being infinity (patterns may also exist with both q and r being infinity). A seemingly difficult problem is to
automate the process of determining a coloring for a (p, q, r) pattern that has the same color along any line
of fish and adheres to the map-coloring principle that adjacent fish have different colors.
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