
Repeating Hyperbolic Pattern Algorithms —
Special Cases

Douglas Dunham
Department of Computer Science
University of Minnesota, Duluth
Duluth, MN 55812-3036, USA

E-mail: ddunham@d.umn.edu
Web Site: http://www.d.umn.edu/˜ddunham/

1

Outline

1. History

2. A Repeating hyperbolic pattern algorithm based on reg-
ular tessellations

3. A Repeating hyperbolic pattern algorithm based on non-
regular tessellations

4. Future work

2

1. History

1. Pre-Escher

2. Escher’s patterns

3. Post-Escher = Dunham, Ferguson, Sazdanovic, etc.

3

Triangle group (7,3,2) tessellation
Originally in Vorlesungenüber die Theorie der

elliptischen Modulfunctionen
F. Klein and R. Fricke, 1890.

4

H.S.M. Coseter’s Figure 7
in Crystal Symmetry and Its Generalizations

Trans. Royal Soc. of Canada, 1957.

5

M.C. Escher’s “Circle Limit” Patterns
Circle Limit I

6

Circle Limit II

7

Circle Limit III

8

Circle Limit IV

9

2. Generation of Repeating Hyperbolic Patterns

Following Escher, we use the Poincaŕe disk model of hyper-
bolic geometry.

10

The Pattern Generation Process

Consists of two steps:

1. Design the basic subpattern ormotif — done by a hyper-
bolic drawing program.

2. Transform copies of the motif about the hyperbolic plane:
replication

11

Repeating Patterns
A repeating patternis composed of congruent copies of the
motif. A motif for Circle Limit I.

12

The Regular Tessellations{p, q}

• Escher based his four “Circle Limit” patterns (and many
of his Euclidean and spherical patterns) on regular tes-
sellations.

• The regular tessellation{p, q} is a tiling composed of
regular p-sided polygons, orp-gonsmeeting q at each
vertex.

• It is necessary that(p − 2)(q − 2) > 4 for the tessel-
lation to be hyperbolic.

• If (p − 2)(q − 2) = 4 or (p − 2)(q − 2) < 4 the tes-
sellation is Euclidean or spherical respectively.

13

The Regular Tessellation{6, 4}

14

A Table of the Regular Tessellations
...

...
...

...
...

...
...

...
...

...

11 * * * * * * * * * · · ·

10 * * * * * * * * * · · ·

9 * * * * * * * * * · · ·

8 * * * * * * * * * · · ·

7 * * * * * * * * * · · ·

q 6 * * * * * * * * · · ·

5 © * * * * * * * * · · ·

4 © * * * * * * * · · ·

3 © © © * * * * * · · ·

2

1

1 2 3 4 5 6 7 8 9 10 11 · · ·

p

- Euclidean tessella-
tions

© - spherical tessella-
tions

* - hyperbolic tessella-
tions

15

Replicating the Pattern

In order to reduce the number of transformations and to
simplify the replication process, we form thep-gon pattern
from all the copies of the motif touching the center of the
bounding circle.

• Thus to replicate the pattern, we need only apply trans-
formations to the p-gon pattern rather than to each in-
dividual motif.

• Some parts of the p-gon pattern may protrude from the
enclosing p-gon, as long as there are corresponding in-
dentations, so that the final pattern will fit together like
a jigsaw puzzle.

• The p-gon pattern is often called thetranslation unit for
repeating Euclidean patterns.

16

The p-gon pattern for Circle Limit I

17

Layers of p-gons

We note that the p-gons of a{p, q} tessellation are ar-
ranged in layersas follows:

• The first layer is just the central p-gon.

• The k + 1st layer consists of all p-gons sharing and edge
or a vertex with a p-gon in thekth layer (and no previous
layers).

• Theoretically a repeating hyperbolic pattern has an in-
finite number of layers, however if we only replicate a
small number of layers, this is usually enough to appear
to fill the bounding circle to our Euclidean eyes.

18

The Regular Tessellation{6, 4} — Revisited

To show the layer structure and exposure of p-gons.

19

Exposure of a p-gon

We also define the exposure of a p-gon in terms of the num-
ber of edges it has in common with the next layer.

• A p-gon hasminimum exposureif it has the fewest edges
in common with the next layer, and thus shares an edge
with the previous layer.

• A p-gon hasmaximum exposureif it has the most edges
in common with the next layer, and thus only shares a
vertex with the previous layer.

• In the pseudo-code, we abbreviate these values asMAXEXP
and MIN EXPrespectively.

20

The Replication Algorithm

The replication algorithm consists of two parts:

1. A top-level “driver” routine replicate() that draws
the first layer, and calls a second routine,
recursiveRep() , to draw the rest of the layers.

2. A routine recursiveRep() that recursively draws the
rest of the desired number of layers.

A tiling pattern is determined by how the p-gon pattern is
transformed across p-gon edges. These transformations are
in the array edgeTran[]

21

The Top-level Routinereplicate()

Replicate (motif) {

drawPgon (motif, IDENT) ; // Draw central p-gon

for (i = 1 to p) { // Iterate over each vertex

qTran = edgeTran[i-1]

for (j = 1 to q-2) { // Iterate about a vertex

exposure = (j == 1) ? MIN_EXP : MAX_EXP ;
recursiveRep (motif, qTran, 2, exposure) ;
qTran = addToTran (qTran, -1) ;

}
}

}

The function addToTran() is described next.

22

The Function addToTran()

Transformations contain a matrix, the orientation, and an
index, pPosition , of the edge across which the last trans-
formation was made (edgeTran[i].pPosition is the
edge matched with edgei in the tiling). Here is addToTran()

addToTran (tran, shift) {
if (shift % p == 0) return tran ;
else return computeTran (tran, shift) ;

}

where computeTran() is:

computeTran (tran, shift) {
newEdge = (tran.pPosition +

tran.orientation * shift) % p ;
return tranMult(tran, edgeTran[newEdge]) ;

}

and wheretranMult (t1, t2) multiplies the matri-
ces and orientations, sets thepPosition to t2.pPosition ,
and returns the result.

23

The Routine recursiveRep()
recursiveRep (motif, initialTran, layer, exposure) {

drawPgon (motif, initialTran) ; // Draw p-gon pattern

if (layer < maxLayers) { // If any more layers
pShift = (exposure == MIN_EXP) ? 1 : 0 ;
verticesToDo = (exposure == MIN_EXP) ? p-3 : p-2 ;

for (i = 1 to verticesToDo) { // Iterate over vertices
pTran = computeTran (initialTran, pShift) ;
qSkip = (i == 1) ? -1 : 0 ;
qTran = addToTran (pTran, qSkip) ;
pgonsToDo = (i == 1) ? q-3 : q-2 ;

for (j = 1 to pgonsToDo) { // Iterate about a vertex
newExposure = (i == 1) ? MIN_EXP : MAX_EXP ;
recursiveRep(motif, qTran, layer+1, newExposure);
qTran = addToTran (qTran, -1) ;

}
pShift = (pShift + 1) % p ; // Advance to next vertex

}
}

}

24

Special Cases

The algorithm above works for p > 3 and q > 3.

If p = 3 or q = 3, the same algorithm works, but with differ-
ent values ofpShift, verticesToDo, qSkip, etc.

25

The casep = 3

In replicate() the calculation of exposure in the in-
ner loop is the same as the general case.

In recursiveRep() :

• pShift = 1 regardless of exposure.

• verticesToDo = 1 regardless of exposure.

• qSkip is -1 for MIN EXPand 0 for MAXEXP.

• pgonsToDo is q - 4 for MIN EXP and q - 3 for
MAXEXP.

• newExposure is the same as the general case.

In both replicate() and recursiveRep() at the last
iteration of the inner loop, the call to recursiveRep() is
replaced by a non-recursive call todrawPgon() .

26

The caseq = 3

In replicate() , exposure = MAX EXPin the inner loop
regardless of whether it is the first iteration or not.

In recursiveRep() :

• pShift is 3 for MIN EXPand 2 for MAXEXP.

• verticesToDo is p - 5 for MIN EXP and p - 4
for MAXEXP.

• qSkip = 0 for all cases.

• pgonsToDo = 1 for all cases.

• newExposure is MIN EXP if i = 1 and MAXEXP if
i > 1 .

27

Some New Hyperbolic Patterns

Escher’s Euclidean Notebook Drawing 20, based on the
{4, 4} tessellation.

28

Escher’s Spherical Fish Pattern Based on{4, 3}

29

A Hyperbolic Fish Pattern Based on{4, 5}

30

Escher’s Euclidean Notebook Drawing 45, based
on the{4, 4} tessellation.

31

Escher’s Spherical “Heaven and Hell” Based on
{4, 3}

32

A Hyperbolic “Heaven and Hell” Pattern Based
on {4, 5}

33

Escher’s Euclidean Notebook Drawing 70, based
on the{6, 3} tessellation.

34

A Hyperbolic Butterfly Pattern Based on {7, 3}

35

3. Pattens Based on Non-Regular Polygon
Tessellations

A non-regular p-sided polygon withq1, q2, . . . , qp copies around
the respective vertices forms a hyperbolic tessellation pro-
vided

p∑

i=1

1

qi
<

p

2
− 1

(so the interior angle at theith vertex is2π/qi).

This tessellation is denoted{p; q1, q2, . . . , qp}

The pattern drawing algorithm is similar to the case for reg-
ular tessellations: a non-recursive “driver”, replicate()
calls a recursive routinereplicateMotif() .
Unfortunately this algorithm draws multiple copies of the
motif if p = 3 or if any of the qi = 3. There are only a few
duplications near the center, but the number of them grows
exponentially in the number of layers.

36

A {4; 6, 3, 6, 4} Polygon Tessellation

37

The Top-level “Driver” replicate()

The replication process starts with the following top-level
“driver”, which calls the recursive routine
replicateMotif() to create the rest of the pattern.

replicate (motif)
{

for (j = 1 to q[1])
{

qTran = edgeTran[1] ;

replicateMotif(motif,qTran,2,MAX_EXP);

qTran = addToTran (qTran, -1) ;
}

}

38

The Recursive RoutinereplicateMotif()
replicateMotif(motif, inTran, layer, exposure)
{

drawMotif (motif, inTran) ;
if (layer < maxLayers)
{

pShift = pShiftArray[exposure] ;
verticesToDo = p -

verticesToSkipArray[exposure] ;

for (i = 1 to verticesToDo)
{

pTran = computeTran(initialTran, pShift) ;
first_i = (i == 1) ;
qTran = addToTran(pTran, qShiftArray[first_i]) ;
if (pTran.orientation > 0)

vertex = (pTran.pposition-1) % p ;
else

vertex = pTran.pposition ;
polygonsToDo = q[vertex] -

polygonsToSkipArray[first_i] ;

for (j = 1 to polygonsToDo)
{

first_j = (j == 1) ;
newExpose = exposureArray[first_j] ;

replicateMotif(motif, qTran, layer+1, newExpose) ;
qTran = addToTran (qTran, -1) ;

}
pShift = (pShift + 1) % p ;

}
}

}

39

A “Three Element” Pattern with Different
Numbers of Animals Meeting at their Heads

40

A “Three Element” Pattern with 3 Bats, 5
Lizards, and 4 Fish Meeting at their Heads

41

A “Three Element” Pattern with 3 Bats, 5
Lizards, and 4 Fish Meeting at their Heads

42

4. Future Work

• Fix the non-regular polygon tessellation algorithm so that
it does not make duplicate copies of the motif at some lo-
cations.

• Allow some or all of the vertices of the fundamental poly-
gon to lie on the bounding circle.

• Automatically generate patterns with color symmetry.

43

The End

I hope not!

44

Escher’s Euclidean Notebook Drawing 42, based
on the{4, 4} tessellation.

45

A Hyperbolic Shell Pattern Based on{4, 5}

46

