Periodic Fractal Patterns

Douglas Dunham

Dept. of Computer Science Univ. of Minnesota, Duluth Duluth, MN 55812, USA

Outline

- Background and the "Area Rule"
- The basic algorithm
- Wallpaper patterns
- A pattern based on $p 1$
- "Reflection" patterns
- "Rotation" patterns
- Conclusions and future work
- Contact information

Background

Our original goal was to create patterns by randomly filling a region R with successively smaller copies of a motif, creating a fractal pattern.

This goal can be achieved if the motifs follow an "area rule" which we describe in the next slide.

The resulting algorithm is quite robust in that it has been found to work for hundreds of patterns in (combinations of) the following situations:

- The region R is connected or not.
- The region R has holes - i.e. is not simply connected.
- The motif is not connected or simply connected.
- The motifs have multiple (even random) orientations.
- The pattern has multiple (even all different) motifs.
- If R is the fundamental region for one of the 17 plane crystallographic (or "wallpaper") groups, that region can be replicated using isometries from the group to tile the plane. The code is different and more complicated in this case.

The Area Rule

If we wish to fill a region R of area A with successively smaller copies of a motif (or motifs), it has been found experimentally that this can be done for $i=0,1,2, \ldots$, with the area A_{i} of the i-th motif obeying an inverse power law:

$$
A_{i}=\frac{A}{\zeta(c, N)(N+i)^{c}}
$$

where where $c>1$ and $N>0$ are parameters, and $\zeta(c, N)$ is the Hurwitz zeta function: $\zeta(s, q)=\sum_{k=0}^{\infty} \frac{1}{(q+k)^{s}}$ (and thus $\sum_{k=0}^{\infty} A_{i}=A$).
We call this the Area Rule

The Basic Algorithm

The algorithm works by successively placing copies m_{i} of the motif at locations inside the bounding region R.

This is done by repeatedly picking a random trial location (x, y) inside R until the motif m_{i} placed at that location doesn't intersect any previously placed motifs.

We call such a successful location a placement. We store that location in an array so that we can find successful locations for subsequent motifs.

We show an example of how this works in the following slides.

A pattern of 21 circles partly filling a circle
(Note: $c=1.30$ and $N=2$ in this example)

Placement of the first motif

Placement of the second motif

First trial for the third motif

Second trial for the third motif

Third trial for the third motif

Successful placement of the third motif

All 245 trials for placement of the $\mathbf{2 1}$ circles

The Basic Algorithm

For each $i=0,1,2, \ldots$
Repeat:
Randomly choose a point within R to place the i-th motif m_{i}.

Until (m_{i} doesn't intersect any of $m_{0}, m_{1}, \ldots, m_{i-1}$) Add m_{i} to the list of successful placements
Until some stopping condition is met, such as a maximum value of i or a minimum value of A_{i}.

Wallpaper Patterns

It has been know for more than 100 years that there are 17 different plane crystallographic groups - symmetry groups for patterns in the Euclidean plane that repeat in two independent directions.

These groups are also called wallpaper groups and the corresponding patterns are called wallpaper patterns.

In 1952 the International Union of Crystallography (ICU) established a notation for these groups. A commonly used shorthand followed.

Later, John Conway popularized the more general orbifold notation.

A pattern of peppers with p1 symmetry

Reflection Patterns

There are four wallpaper groups generated entirely by reflections: $p 2 m m, p 3 m 1, p 4 m m$, and $p 6 m m$. We show examples of all except $p 3 m 1$

One issue that arises is what to do if a motif overlaps a reflection line boundary of the fundamental region. We consider three options:

- Avoid the boundary by rejecting such a trial placement.
- Allow the overlap to occur - produces unusual motifs.
- Move a motif with mirror symmetry to be centered on the mirror boundary and adjust the area rule since only half of the motif is within the fundamental region.

A p2mm Pattern of Hearts that Avoid Mirror Boundaries

A p2mm Pattern of Circles with Overlaps on Mirror Boundaries In this pattern, $c=1.52$ and $N=8$ with 91% fill.

A p2mm Pattern of Circles Centered on Mirror Boundaries In this pattern, $c=1.26$ and $N=3$ with 80% fill.

A $p 4 m m$ Pattern of Black and White Triangles

A $p 6 \mathrm{~mm}$ Pattern of Triangles

A $p 6 \mathrm{~mm}$ Pattern of Arrows

A $p 6 \mathrm{~mm}$ Flower Pattern with some on Mirror Boundaries

Rotation Patterns

There are four wallpaper groups generated entirely by rotations: $p 2, p 3, p 4$, and $p 6$. We just show examples of $p 4$ and $p 6$
The issue that arises here is what to do if a motif overlaps a center of rotation in the fundamental region.
In the case of a p-fold rotation center, if the motif also has (at least) p-fold rotational symmetry we align the motif with that rotation center.

As was the case for reflection patterns, we also make an adjustment to the area rule.

In the next slide we show the modified algorithm for $p 4$. Similar modifications apply to the other groups.

The Modified Algorithm for p4

For each $i=0,1,2, \ldots$
Repeat:
Randomly choose a point within R to place the i-th motif m_{i}.
If $\mathbf{m}_{\mathbf{i}}$ has 4-fold symmetry and overlaps a 4-fold rotation point

Move $\mathbf{m}_{\mathbf{i}}$ to be centered on that 4-fold rotation point

If $\mathbf{m}_{\mathbf{i}}$ has at least 2-fold symmetry and overlaps a 2-fold rotation point

Move $\mathbf{m}_{\mathbf{i}}$ to be centered on that 2-fold rotation point

Until (m_{i} doesn't intersect any of $m_{0}, m_{1}, \ldots, m_{i-1}$) Add m_{i} to the list of successful placements

Until some stopping condition is met, such as a maximum value of i or a minimum value of A_{i}.

A p4 Pattern of Circles with some on 4-fold Rotation Centers

A p6 Pattern of Circles with some on each Rotation Center

A flower pattern with $p 6 \mathrm{~mm}$ symmetrey

Note that some tori are linked.

A 3D pattern of tori by Paul Bourke

Future Work

- We have shown fractal patterns with some of the wallpaper groups as their symmetry groups, but we haven't implemented algorithms for all those groups. It would seem possible to create locally fractal patterns having the global symmetries of the other plane symmetry groups using our techniques.
- It would also seem possible to generate patterns of the sphere and hyperbolic plane that are locally fractal, but are globally symmetric.

Acknowledgements and Contact

We would like to thank all the organizers of ICGG 2016.

Contact Information:
Doug Dunham
Email: ddunham@d.umn.edu
Web: http://www.d.umn.edu/~ddunham
John Shier
Email: johnpf99@frontiernet.net
Web: http://www.john-art.com/stat_geom_linkpage.html

