


Outline

◮ Background

◮ The original algorithm

◮ The new algorithm

◮ Variations

◮ Conclusions and future work

◮ Contact information



Background

Our original goal was to randomly fill a region R of area A with
successively smaller copies of a fill-shape (called a motif in previous
work), creating a fractal pattern.

We achieved that goal with our original algorithm, which we describe
below. For that algorithm, the size of the fill-shapes was specified by an
inverse power law.

Recently we used a modified version of the algorithm in which the size of
the fill-shapes is determined using an estimate of the amount of “room”
left after each placement.

We have evidence that the size of the fill-shapes in the new algorithm
also obeys an inverse power law.



The Original Algorithm

We found experimentally that we could fill the region R if for
i = 0, 1, 2, . . ., the area Ai of i-th fill-shape obeyed an inverse power law:

Ai =
A

ζ(c ,N)(N + i)c

where where c > 1 and N > 0 are parameters, and ζ(c ,N) is the Hurwitz
zeta function: ζ(s, q) =

∑
∞

k=0
1

(q+k)s (and thus
∑

∞

k=0 Ai = A).

We called this the Area Rule.



Algorithm Details

The algorithm works by successively placing copies mi of the fill-shapes
at locations inside the bounding region R .

This is done by repeatedly picking a random trial location (x , y) inside R

until the fill-shape mi placed at that location doesn’t intersect any
previously placed fill-shapes.

We call such a successful location a placement. We store that location
in an array so that we can find successful locations for subsequent
fill-shapes.



A Flowchart for the Algorithm
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A Sample Pattern of Peppers



The New Algorithm

The new algorithm is the same as the original algorithm except for the
determination of the size of the next fill-shape. Rather than specifying
the size by the area rule, we use information about the part of the region
R not yet filled to give the size of the next fill-shape.

Now, for discussion, we will restrict both R the fill-shapes to be disks,
Although the algorithm works in the general case too.

We use the term gasket for the unfilled part of R after placing the first i
fill-shapes. So the gasket looks like Swiss cheese when the fill-shapes are
disks. Now we let Ai be the area of the gasket and Pi be its perimeter,
then the radius ri+1 of the next disk is given by:

ri+1 = γ
Ai

Pi

(1)

where γ > 0 is a dimensionless parameter which can be as large as 3 (but
if γ > 2 the algorithm must be modified as discussed below).



Notes and Motivation

1. In the formula above, the size of the next fill-shape is certainly
proportional to Ai since that is the remaining area available. Also Pi

measures the boundary of that area that the next fill-shape can “run
into” (it also measures the “fragmentation” of that area), hence the
inverse relationship.

2. To get started, the area and perimeter of the bounding circle are
πR2 and 2πR respectively, so the initial area/perimeter ratio is R/2.
Thus if γ > 2 the first disk doesn’t fit within the bounding circle.

3. The motivation for formula for ri+1 comes from the Dimensionless
Gasket Width:

DGW = Ai/(ri+1Pi )

which was used to analyze the halting probability of the original
algorithm and was found to converge to a limit L in non-halting
cases. Solving for ri+1 indicates how it should depend on Ai and Pi :
ri+1 = (1/L)Ai/Pi . So we define γ by γ = 1/L.



A Sample Pattern (γ = 1/2)



Another Pattern (γ = 3/2)



Log-log plot of trials versus placements



Log-log plot of disk areas (red) and the gasket area (blue)



The Property of Area and Perimeter

1. The plot above was again for γ = 3/2. The plot of the logarithms
of the areas appears to be close to linear, indicating a power
relationship. The slope of the last pair is -1.272727, which appears
to be the beginning of a repeating decimal, and thus hints at a
rational value for the exponent.

2. By running the algorithm with different rational values of γ, it was
found that the following exponent was an exact fit to computational
accuracy:

c = −

4 + 2γ

4 + γ

The fact that the area, πr2i , of the i-th disc is proportional to 1/i c .
is the Property of Area and Perimeter of the gasket refered to in
the title.

3. A Challenge: derive the formula for c above from the recursion of
Equation (1).



Convergence to the exponent c

The next plot shows how fast the estimated values of c (from successive
disk area values at i = a power of 2) converge to the value 14/11 given
by the formula above when γ = 3/2.



Convergence of c to 14/11



Variation 1 — Larger γ Values

◮ We have noted that the new algorithm as given will not work if
γ > 2. But we can start with disks of a fixed size (smaller than the
bounding circle of course) and keep placing them until the disks
given by the radius formula are smaller, then switch to the new
algorithm. The next slide shows a sample pattern when γ = 5/2.

◮ It can be shown that the fractal dimension of the disk pattern is
given by D = 2/c in both the new algorithm and this variant.



A Pattern using the modified algorithm



Variation 2 — Other Shapes

◮ We started investigating our new algorithm with discs as fill-shapes
within a circular region R since the test for overlap of discs is
simple: if the distance between their centers is larger than the sum
of their radii, they don’t overlap.

◮ However, as with the original algorithm, we conjecture that the new
algorithm proceeds without halting for “reasonable” combinations of
R and the fill-shape, and for positive values of γ within a small
interval.

◮ Perhaps the next simplest combination for R and the fill-shapes are
squares. And, in fact that combination works as shown in the next
slide. For squares γ can be twice as big and is equal to 2.8 in that
slide. There are 400 squares.



A Pattern of squares using the new algorithm



Variation 3 — Higher Dimensions

◮ Another variation is to consider n-dimensional balls as fill-shapes
within a bounding sphere in n dimensions. Here the next radius is
given by the formula

ri+1 = γ
Vi

Ai

where Vi is the n-dimensional gasket volume and Ai is the
(n − 1)-dimensional gasket surface area.

◮ By running several samples with different (rational) γ values, and
for n = 3 and n = 4 we discovered that the ball volumes seemed to
follow a power law whose exponent −c is given by the table on the
next slide.

◮ For n = 1 we have directly verified the c value in the table.



A Table of c values for Spheres

Dimension c-value
1 1 + γ
2 (4 + 2γ)/(4 + γ)
3 (9 + 3γ)/(9 + 2γ)
4 (16 + 4γ)/(16 + 3γ)
n (n2 + nγ)/(n2 + (n − 1)γ)

Table: A table of c values for balls within a sphere in n-dimensions.



Cubes within a Cube in other Dimensions

◮ We also considered n-dimensional cubes as fill-shapes within a
bounding n-cube for dimensions other than 2. Here the next side
length is given by the formula

si+1 = γ
Vi

Ai

where Vi is the n-dimensional gasket volume and Ai is the
(n − 1)-dimensional gasket surface area as before.

◮ Again, by running several samples with different (rational) γ values,
and for n = 3 and n = 4 we discovered that the ball volumes
seemed to follow a power law whose exponent −c is given by the
table on the next slide.

◮ Again for n = 1 we have directly verified the c value in the table.



A Table of c values for Cubes

Dimension c-value
1 (2 + γ)/2
2 (8 + 2γ)/(8 + γ)
3 (18 + 3γ)/(18 + 2γ)
4 (32 + 4γ)/(32 + 3γ)
n (2n2 + nγ)/(2n2 + (n − 1)γ)

Table: A table of c values for filled n-cubes within an n-cube in
n-dimensions.



Future Work

◮ Prove that the new algorithm always converges for all γ less than
some minimum value.

◮ Prove that the areas of the disks, or spheres in 3D, decrease
according to a power law, and similarly for squares and cubes.

◮ Prove that the power laws are given by the formulas above.
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