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1. History

1. Pre-Escher

2. Escher’s patterns

3. Post-Escher = Dunham
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Triangle group (7,3,2) tessellation
Originally in Vorlesungenüber die Theorie der

elliptischen Modulfunctionen
F. Klein and R. Fricke, 1890.

4



H.S.M. Coseter’s Figure 7
in Crystal Symmetry and Its Generalizations

Trans. Royal Soc. of Canada, 1957.
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Escher’s Notebook Drawing 18
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Escher’sDay and Night

7



Escher’sDevelopment II(point limit)
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Escher’sSquare Limit(line limits)
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M.C. Escher’s “Circle Limit” Patterns
Circle Limit I
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Circle Limit II
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Circle Limit III
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Circle Limit IV
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2. Generation of Repeating Hyperbolic Patterns

Following Escher, we use the Poincaŕe disk model of hyper-
bolic geometry.
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Poincaré Disk Model of Hyperbolic Geometry
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The Pattern Generation Process

Consists of two steps:

1. Design the basic subpattern ormotif — done by a hyper-
bolic drawing program.

2. Transform copies of the motif about the hyperbolic plane:
replication
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Repeating Patterns
A repeating patternis composed of congruent copies of the
motif. A motif for Circle Limit I.
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The Regular Tessellations{p, q}

• Escher based his four “Circle Limit” patterns (and many
of his Euclidean and spherical patterns) on regular tes-
sellations.

• The regular tessellation{p, q} is a tiling composed of
regular p-sided polygons, orp-gonsmeeting q at each
vertex.

• It is necessary that(p − 2)(q − 2) > 4 for the tessel-
lation to be hyperbolic.

• If (p − 2)(q − 2) = 4 or (p − 2)(q − 2) < 4 the tes-
sellation is Euclidean or spherical respectively.
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The Regular Tessellation{6, 4}
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A Table of the Regular Tessellations
...

...
...

...
...

...
...

...
...

...

11 * * * * * * * * * · · ·

10 * * * * * * * * * · · ·

9 * * * * * * * * * · · ·

8 * * * * * * * * * · · ·

7 * * * * * * * * * · · ·

q 6 * * * * * * * * · · ·

5 © * * * * * * * * · · ·

4 © * * * * * * * · · ·

3 © © © * * * * * · · ·

2

1

1 2 3 4 5 6 7 8 9 10 11 · · ·

p

- Euclidean tessella-
tions

© - spherical tessella-
tions

* - hyperbolic tessella-
tions
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Replicating the Pattern

In order to reduce the number of transformations and to
simplify the replication process, we form thep-gon pattern
from all the copies of the motif touching the center of the
bounding circle.

• Thus to replicate the pattern, we need only apply trans-
formations to the p-gon pattern rather than to each in-
dividual motif.

• Some parts of the p-gon pattern may protrude from the
enclosing p-gon, as long as there are corresponding in-
dentations, so that the final pattern will fit together like
a jigsaw puzzle.

• The p-gon pattern is often called thetranslation unit for
repeating Euclidean patterns.
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The p-gon pattern for Circle Limit I
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Layers of p-gons

We note that the p-gons of a{p, q} tessellation are ar-
ranged in layersas follows:

• The first layer is just the central p-gon.

• The k + 1st layer consists of all p-gons sharing and edge
or a vertex with a p-gon in thekth layer (and no previous
layers).

• Theoretically a repeating hyperbolic pattern has an in-
finite number of layers, however if we only replicate a
small number of layers, this is usually enough to appear
to fill the bounding circle to our Euclidean eyes.
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The Regular Tessellation{6, 4} — Revisited

To show the layer structure and exposure of p-gons.
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Exposure of a p-gon

We also define the exposure of a p-gon in terms of the num-
ber of edges it has in common with the next layer (and thus
the fewest edges in common with the previous layer.

• A p-gon hasmaximum exposureif it has the most edges
in common with the next layer, and thus only shares a
vertex with the previous layer.

• A p-gon hasminimum exposureif it has the least edges
in common with the next layer, and thus shares an edge
with the previous layer.

• We abbreviate these values as MAXEXP and MIN EXP
respectively.
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The Replication Algorithm

The replication algorithm consists of two parts:

1. A top-level “driver” routine replicate() that draws
the first layer, and calls a second routine,
recursiveRep() , to draw the rest of the layers.

2. A routine recursiveRep() that recursively draws the
rest of the desired number of layers.

A tiling pattern is determined by how the p-gon pattern is
transformed across p-gon edges. These transformations are
in the array edgeTran[]
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The Top-level Routinereplicate()

Replicate ( motif ) {

drawPgon ( motif, IDENT ) ; // Draw central p-gon

for ( i = 1 to p ) { // Iterate over each vertex

qTran = edgeTran[i-1]

for ( j = 1 to q-2 ) { // Iterate about a vertex

exposure = (j == 1) ? MIN_EXP : MAX_EXP ;
recursiveRep ( motif, qTran, 2, exposure ) ;
qTran = addToTran ( qTran, -1 ) ;

}
}

}

The function addToTran() is described next.
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The Function addToTran()

Transformations contain a matrix, the orientation, and an
index, pPosition , of the edge across which the last trans-
formation was made (edgeTran[i].pPosition is the
edge matched with edgei in the tiling). Here is addToTran()

addToTran ( tran, shift ) {
if ( shift % p == 0 ) return tran ;
else return computeTran ( tran, shift ) ;

}

where computeTran() is:

computeTran ( tran, shift ) {
newEdge = (tran.pPosition +

tran.orientation * shift) % p ;
return tranMult(tran, edgeTran[newEdge]) ;

}

and wheretranMult ( t1, t2 ) multiplies the matri-
ces and orientations, sets thepPosition to t2.pPosition ,
and returns the result.
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The Routine recursiveRep()
recursiveRep ( motif, initialTran, layer, exposure ) {

drawPgon ( motif, initialTran ) ; // Draw p-gon pattern

if ( layer < maxLayer ) { // If any more layers
pShift = ( exposure == MIN_EXP ) ? 1 : 0 ;
verticesToDo = ( exposure == MIN_EXP ) ? p-3 : p-2 ;

for ( i = 1 to verticesToDo ) { // Iterate over vertices
pTran = computeTran ( initialTran, pShift ) ;
qSkip = ( i == 1 ) ? -1 : 0 ;
qTran = addToTran ( pTran, qSkip ) ;
pgonsToDo = ( i == 1 ) ? q-3 : q-2 ;

for ( j = 1 to pgonsToDo ) { // Iterate about a vertex
newExposure = ( i == 1 ) ? MIN_EXP : MAX_EXP ;
recursiveRep(motif, qTran, layer+1, newExposure);
qTran = addToTran ( qTran, -1 ) ;

}
pShift = (pShift + 1) % p ; // Advance to next vertex

}
}

}
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Special Cases

The algorithm above works for p > 3 and q > 3.

If p = 3 or q = 3, the same algorithm works, but with differ-
ent values ofpShift, verticesToDo, qSkip, etc.
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3. Some New Hyperbolic Patterns

Escher’s Euclidean Notebook Drawing 20, based on the
{4, 4} tessellation.
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Escher’s Spherical Fish Pattern Based on{4, 3}
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A Hyperbolic Fish Pattern Based on{4, 5}
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Escher’s Euclidean Notebook Drawing 25, based
on the{6, 3} tessellation.
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Escher’s Print Reptilesbased on Notebook
Drawing 25
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A Hyperbolic Lizard Pattern Based on {8, 3}
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Escher’s Euclidean Notebook Drawing 42, based
on the{4, 4} tessellation.
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A Hyperbolic Shell Pattern Based on{4, 5}
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Escher’s Euclidean Notebook Drawing 45, based
on the{4, 4} tessellation.
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Escher’s Spherical “Heaven and Hell” Based on
{4, 3}
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A Hyperbolic “Heaven and Hell” Pattern Based
on {4, 5}
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Escher’s Euclidean Notebook Drawing 70, based
on the{6, 3} tessellation.
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A Hyperbolic Butterfly Pattern Based on {4, 3}
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4. Future Work

• Extend the algorithm to handle tilings by non-regular
polygons.

• Extend the algorithm to the cases of infinite regular poly-
gons: {p,∞} composed of infinitep-sided polygons, or
{∞, q} composed of infinite-sided polygons meetingq at
a vertex.

• Automatically generate patterns with color symmetry.
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The End

I hope not!
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