
15th INTERNATIONAL CONFERENCE ON GEOMETRY AND GRAPHICS
1–5 AUGUST, 2012, MONTREAL, CANADA

A FAMILY OF BUTTERFLY PATTERNS INSPIRED BY ESCHER

Douglas DUNHAM

ABSTRACT: M.C. Escher is noted for his repeating patterns, usually with animal motifs. For a few motifs
he created more than one pattern with different combinatorial characteristics, even in different geometries,
leading to the concept of families of patterns with the same motif but different combinatorics. Hyperbolic
geometry is useful in that it provides an infinite number of combinatorial possibilities. This paper investi-
gates one of those families, based on a butterfly motif.
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1. INTRODUCTION

In 1948, the Dutch artist M.C. Escher created his Regular Division Drawing number 70, a repeating
Euclidean pattern of butterflies. We show a closely related hyperbolic pattern in Figure 1 below.

Figure 1: A pattern of butterflies based on the{7, 3} tessellation.

This paper is organized as follows. First we present some background on Escher and his but-
terfly patterns. Then we discuss hyperbolic geometry, useful for interpreting the patterns we show,



and regular tessellations. Next we define what we mean by a family of patterns, showing several
related butterfly patterns. Finally, we offer conclusions and indicate directions of future work.

2. ESCHER AND BUTTERFLY PATTERNS

Escher was well known for his repeating patterns, which had two characteristics: they filled the
plane without gaps or overlaps, and they exhibited color symmetry. One of his patterns that exhib-
ited these properties was his Regular Division Drawing number 70 of butterflies (page 172 of [2]).
He later used the butterfly motif in his wood engraving “Butterflies” (cat. no. 369, page 305 of
[2]), a water color circular design of butterflies decreasing to a point limit, and Regular Division
Drawing 79 (page 179 of 2]). These latter two works clearly exhibit the pattern of interlocking
circles upon which they are based — not so evident in Regular Division Drawing 70. However
the pattern of interlocking circles of butterflies of each color is evident in the related hyperbolic
pattern shown in Figure 1.

Escher mapped some of his “Regular Division” drawings onto spheres, regular polyhedra, and
the hyperbolic plane, but not Regular Division Drawing 70. However the Canadian mathematician
H.S.M. Coxeter described how 18 of Escher’s butterflies could be placed on a torus (pages 24–
27 of [1]). Doris Schattschneider and Wallace Walker placed60 of those butterflies on a regular
icosahedron [3]. And my students and I have created several hyperbolic patterns based on those
butterflies, including Figure 1.

3. HYPERBOLIC GEOMETRY AND REGULAR TESSELLATIONS

The patterns that I have created can be interpreted as patterns in the hyperbolic plane, and specif-
ically in the Poincaŕe diskmodel of hyperbolic geometry. The hyperbolic points in thismodel
are represented by Euclidean points within a bounding circle. Hyperbolic lines are represented by
(Euclidean) circular arcs orthogonal to the bounding circle (including diameters). The hyperbolic
measure of an angle is the same as its Euclidean measure in thedisk model (we say such a model
is conformal), but equal hyperbolic distances correspond to ever-smaller Euclidean distances as
figures approach the edge of the disk. Figure 2 shows some lines superimposed on a computer
rendition of Escher’s hyperbolic patternCircle Limit I. Hyperbolic reflections across lines are rep-
resented by inversions in the circular arcs representing those lines (including Euclidean reflections
across diameters). Other hyperbolic transformations can be built up as products (of at most three)
reflections. For example, successive reflections across twointersecting lines produces a hyperbolic
rotation about their intersection point by twice the angle of intersection (as in the Euclidean case).

Many of Escher’s Regular Division drawings are based on theregular tessellations{p, q}
formed by regularp-sided polygons meetingq at each vertex. If(p − 2)(q − 2) = 4, the tes-
sellation is Euclidean and there are three solutions: the tilings by square, equilateral triangles, and
regular hexagons, denoted{4, 4}, {3, 6}, and{6, 3} respectively. If(p − 2)(q − 2) < 4, the tes-
sellation is spherical and there are five solutions:{3, 3}, {3, 4}, {3, 5}, {4, 3}, and{5, 3}. These
correspond to “blown up” versions of the Platonic solids, the tetrahedron, octahedron, icosahedron,
cube, and dodecahedron, respectively. If(p − 2)(q − 2) > 4, the tessellation is hyperbolic and
there are an infinite number of solutions. Figure 3 shows the{6, 4} tessellation superimposed on a
computer rendition of Escher’s hyperbolic patternCircle Limit I.



Figure 2: A computer rendition of Circle
Limit I showing three hyperbolic lines on it.

Figure 3: A computer rendition of Circle
Limit I with the {6, 4} tessellation superim-
posed.

The table below shows the possible spherical, Euclidean, and hyperbolic regular tessellations.

Table 1: A Table of the Regular Tessellations

...
...

...
...

...
...

...

8 * * * * * * · · ·

7 * * * * * * · · ·

q 6 * * * * * · · ·

5 © * * * * * · · ·

4 © * * * * · · ·

3 © © © * * · · ·

3 4 5 6 7 8 · · ·

p

- Euclidean tessellations
© - spherical tessellations
* - hyperbolic tessellations

In particular, it indicates that there are infinitely many hyperbolic tessellations, but only a finite
number of Euclidean and spherical tessellations, thus there are many more possible patterns based
on hyperbolic tessellations. Escher created only four hyperbolic patterns, hisCircle Limit prints.
Undoubtedly the reason he did not make more was the fact that creating such patterns by hand is



a laborious and time-consuming process. My students and I were able to avoid this problem by
using computer technology.

4. FAMILIES OF BUTTERFLY PATTERNS

Regular Division Drawing 70 and Figure 1 above are based on the{6, 3} and{7, 3} tessellations re-
spectively. Schattschneider and Walker’s butterfly decoration of the icosahedron mentioned above
is based on the{3, 5} tessellation. This leads us to define a 2-parameterfamilyof butterfly patterns
(p, q) for all p ≥ 3 andq ≥ 3, where the pattern (p, q) is based on the tessellation{p, q}. In (p, q)
p butterflies meet at left front wing tips andq of them meet at right rear wing tips. In the past I
have built tetrahedral, octahedral, and icosahedral models decorated with butterflies. Those pattern
would be denoted (3, 3), (3, 4), and (3, 5) respectively.

All the patterns discussed above havecolor symmetry: any symmetry operation on the pattern
permutes the colors. One can see that a rotation by2π/7 about the center of Figure 1 cyclicly
permutes the colors except for white, which remains fixed. Wealso require the group of color
permutations to be transitive on the colors, so that all the colors get “mixed up”. Following Escher,
for these butterfly patterns we also want the circles on the wings to be a different color than all
the butterflies that meet at a left front wing tip; this “circle” color is white for the butterflies at the
center of Figure 1 above. We call this the “color of circles convention”. We also require that the
pattern obey the map-coloring principle that butterflies sharing an edge must be different colors.
In the subfamily (p, 3), if p is even, then three colors suffice, as in the case of Regular Division
Drawing 70 and Figure 4 below which shows (8, 3). If p is odd, more colors are required, as can

Figure 4: A pattern of butterflies based on the{8, 3} tessellation.



be seen in Figure 1, and in the figures below.
Figures 5 and 6 show 6-colored butterfly patterns based on the{5, 4} and{5, 5} tessellations

respectively.

Figure 5: A pattern of butterflies based on the{5, 4} tessellation.

Figures 7 and 8 show two butterfly patterns based on the{6, 4} tessellation. Figure 7 satisfies
the “colors of the circles convention” in that the circular dots on the wings at a meeting point of
left front wing tips is a different color than any of those wings — this requires four colors. But the
pattern of Figure 8 with only three colors violates that convention.

Figure 9 shows an 8-colored butterfly pattern based on the{7, 4} tessellation.
Though it would seem that we could just keep generating butterfly patterns with different values

of p andq, there are aesthetic limitations in that large values ofp or q or both tend distort the motifs
to the point where they can’t be recognized. We start to see this in the pattern of Figure 9, but it is
even more obvious in Figure 10, which is based on the{10, 4} tessellation.

This brings us to the end of our current investigation of thisfamily of butterfly patterns.



Figure 6: A pattern of butterflies based on the{5, 5} tessellation.



Figure 7: A pattern of butterflies based on the{6, 4} tessellation.



Figure 8: A pattern of butterflies based on the{6, 4} tessellation that violates the “color of circles conven-
tion”.



Figure 9: A pattern of butterflies based on the{7, 4} tessellation.



Figure 10: A pattern of distorted butterflies based on the{10, 4} tessellation.



CONCLUSIONS

We have showed that some repeating patterns do not just existin isolation, but are related to many
other patterns with similar motifs but different combinatorical properties. We have also seen that
most of these patterns exist in the hyperbolic plane. All therelated patterns can be thought of as
belonging to a single family of patterns, as we have shown with the family of butterfly patterns. The
same techniques can be used to investigate other families ofpatterns — notably those related to
Escher’s Regular Division Drawings, many of which are basedon regular tessellations{p, q}. The
colorings chosen for the butterflies in the patterns we have presented we determined “by hand”,
and as we have seen, different values of the parametersp andq lead to quite different numbers of
colors. It seems to be a difficult task, for future research, to automate the color assignments to have
both color symmetry and satisfy the map-coloring principle.
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