
An Algorithm to Generate Repeating
Hyperbolic Patterns

Douglas Dunham
Department of Computer Science
University of Minnesota, Duluth
Duluth, MN 55812-3036, USA

E-mail: ddunham@d.umn.edu
Web Site: http://www.d.umn.edu/˜ddunham/

The {8,3} tessellation on Circle Limit III

An Islamic pattern based on the {8,3}
tessellation

Poincaré Circle Model of Hyperbolic
Geometry

• Points: points within the bounding circle

• Lines: circular arcs perpendicular to the bounding
circle (including diameters as a special case)

The Regular Tessellations {p,q}

There is a regular tessellation, {p,q} of the hyper-
bolic plane by regular p-sided polygons meeting q at
a vertex provided
(p − 2)(q − 2) > 4

The tessellation {6,4} superimposed on the Circle
Limit I pattern.

An arabesque pattern based on the {6,4}
tessellation

The General Replication Algorithm

A motif is a basic sub-pattern, of which the entire re-
peating pattern is comprised.

Replication is the process of transforming copies of the
motif about the hyperbolic plane in order to create the
whole repeating pattern.

A fundamental region for the symmetry group of a
pattern is a closed topological disk such that copies
of it cover the plane without gaps or overlaps.

In Escher patterns the motif can usually be used as a
fundamental region.

For a pattern with a finite motif, the fundamental re-
gion can be taken to be a convex polygon. This poly-
gon will contain exactly the right pieces of the motif
to reconstruct it.

Replication using copies of such a fundamental poly-
gon will also create the entire pattern of motifs.

A Fundamental Polygon Tessellation

A quadrilateral can used as the fundamental region
for the Circle Limit III pattern, as shown below

Layers of Fundamental Polygons

The fundamental polygons are arranged in layers (also
called coronas in tiling literature), which are defined
inductively.

The first layer consists of all polygons with a vertex at
the center of the bounding circle.

The boldmath k+1st layer consists of all polygons shar-
ing an edge or vertex with the kth layer (and no previ-
ous layers).

A Polygon Tessellation Showing Layers

1 1

1

1

1

1

2

2

2

2

2

2

2

2

3

3

3

3

3

3

The polygon tessellation, with a fundamental polygon
emphasized and parts of layers 1, 2, and 3 labeled.

Specification of the Fundamental Polygon

We use {p; q1, q2, . . . , qp} to denote the fundamental
polygon with p sides and qi polygons meeting at vertex
i (so the interior angle at the ith vertex is 2π/qi).

The condition that a polygon is a fundamental polygon
for a hyperbolic tessellation is that:

p∑

i=1

1

qi

<
p

2
− 1

(which generalizes the condition (p − 2)(q − 2) > 4
for regular tessellations). If the “<” is replaced with “=”
or “>”, one obtains a Euclidean or spherical tessellation
respectively.

We say a polygon of a tessellation has minimal exposure
if it shares an edge with a previous layer; we say it has
minimal exposure if it shares a vertex with a previous
layer.

Minimal and Maximal Exposure

M M

M

M

M

M

1 2

34

m

m

M

M

M

m

m

The polygons with minimal exposure are marked
with m’s, and those with maximal exposure are marked
with M’s.

Some Polygons and Replication

A

B

C

2

3

D

G

E

F

This figure shows how recursive calls in the replica-
tion work starting at polygon A. Polygon vertices are
numbered in counter-clockwise order with vertex i at
the right end of edge i looking outward.

The Top-level “Driver” for Replication

The replication process starts with the following top-
level “driver”, which calls the recursive routine
replicateMotif() to create the rest of the pat-
tern.

replicate (motif)
{

for (j = 1 to q[1])
{
qTran = edgeTran[1] ;

replicateMotif(motif,qTran,2,MAX_EXP);

qTran = addToTran (qTran, -1) ;
}

}

Utilities to Support Replication

Functions to compute transformations, based on
tranMult() which multiplies two transformations
and returns the product.

addToTran (tran, shift)
{

if (shift % p == 0) return tran ;
else return computeTran (tran, shift);

}

computeTran (tran, shift)
{

newEdge = (tran.pPosition +
tran.orientation*shift) %p ;

return tranMult(tran,
edgeTran[newEdge]) ;

}

Arrays that control replication.

pShiftArray[] = { 1, 0 } ;
verticesToSkipArray[] = { 3, 2 } ;
qShiftArray[] = { 0, -1 } ;
polygonsToSkipArray[] = { 2, 3 } ;
exposureArray[] = { MAX_EXP, MIN_EXP } ;

The Recursive replicateMotif()
replicateMotif(motif, inTran, layer, exposure)
{
drawMotif (motif, inTran) ;
if (layer < maxLayers)
{

pShift = pShiftArray[exposure] ;
verticesToDo = p -

verticesToSkipArray[exposure] ;

for (i = 1 to verticesToDo)
{
pTran = computeTran(initialTran, pShift) ;
first_i = (i == 1) ;
qTran = addToTran(pTran, qShiftArray[first_i]) ;
if (pTran.orientation > 0)

vertex = (pTran.pposition-1) % p ;
else

vertex = pTran.pposition ;
polygonsToDo = q[vertex] -

polygonsToSkipArray[first_i] ;

for (j = 1 to polygonsToDo)
{

first_j = (j == 1) ;
newExpose = exposureArray[first_j] ;

replicateMotif(motif, qTran, layer+1, newExpose) ;
qTran = addToTran (qTran, -1) ;

}
pShift = (pShift + 1) % p ;

}
}

}

A “Three Element” Pattern Using {6,4}

A “Three Element” Pattern with Different
Numbers of Animals Meeting at their Heads

A “Three Element” Pattern with 3 Bats, 5
Lizards, and 4 Fish Meeting at their Heads

A “Three Element” Pattern with 3 Bats, 5
Lizards, and 4 Fish Meeting at their Heads

Future Work

• Allow vertices at infinity.

• Create a program to transform between different
fundamental polygons.

• Automatically generate patterns with color sym-
metry.

