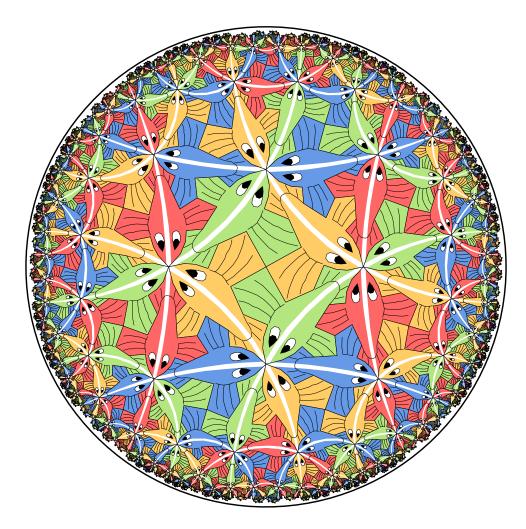
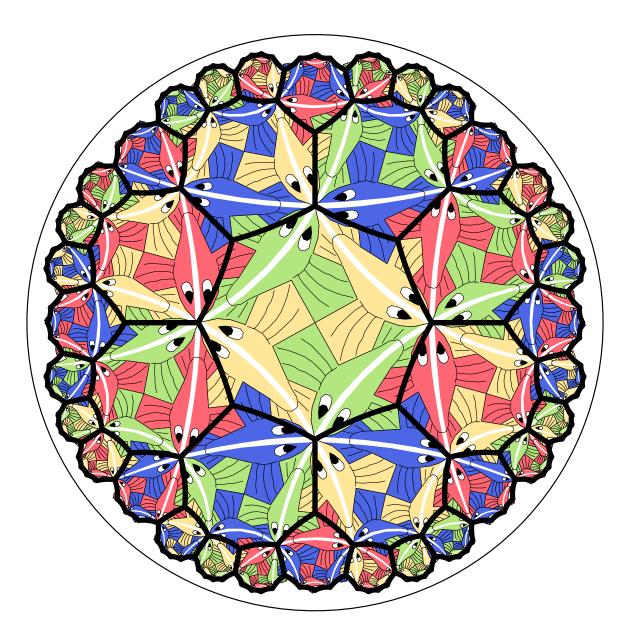
An Algorithm to Generate Repeating Hyperbolic Patterns

Douglas Dunham

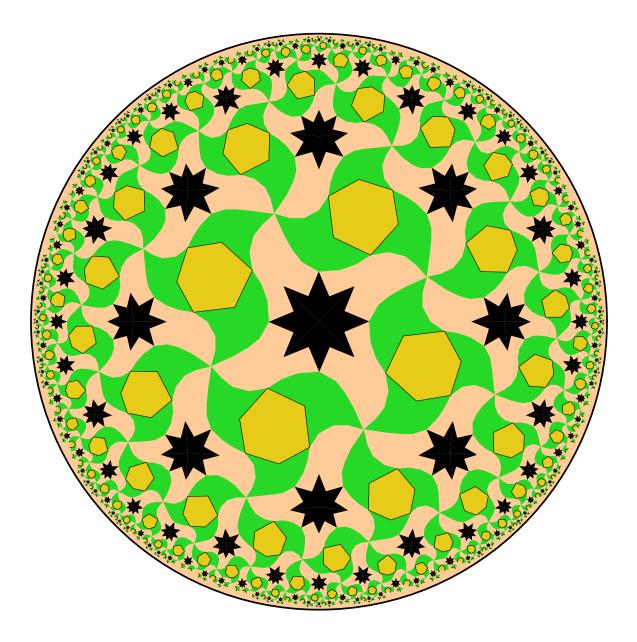
Department of Computer Science University of Minnesota, Duluth Duluth, MN 55812-3036, USA E-mail: ddunham@d.umn.edu Web Site: http://www.d.umn.edu/~ddunham/

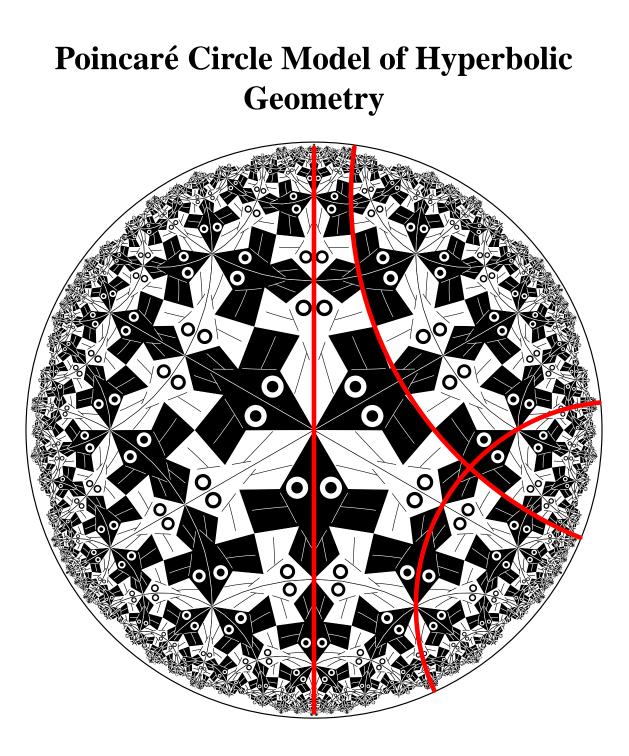


The {8,3} tessellation on *Circle Limit III*



An Islamic pattern based on the {8,3} tessellation



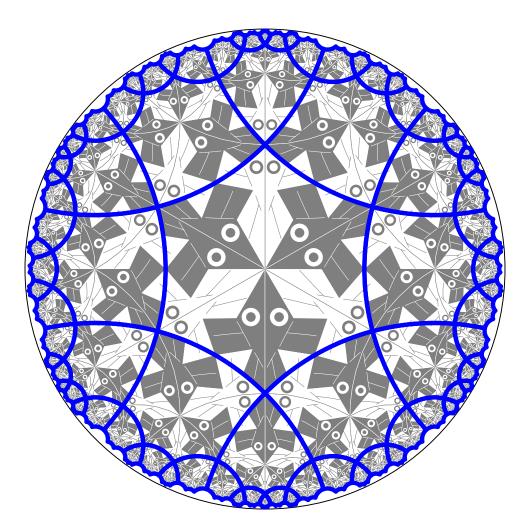


- Points: points within the bounding circle
- Lines: circular arcs perpendicular to the bounding circle (including diameters as a special case)

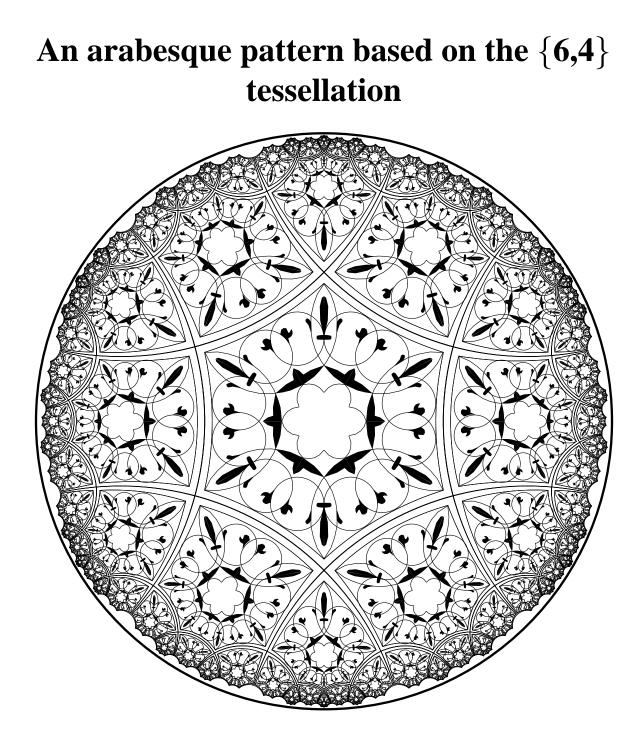
The Regular Tessellations {**p**,**q**}

There is a *regular tessellation*, $\{p,q\}$ of the hyperbolic plane by regular *p*-sided polygons meeting *q* at a vertex provided

(p-2)(q-2)>4



The tessellation $\{6,4\}$ superimposed on the *Circle Limit I* pattern.



The General Replication Algorithm

A *motif* is a basic sub-pattern, of which the entire repeating pattern is comprised.

Replication is the process of transforming copies of the motif about the hyperbolic plane in order to create the whole repeating pattern.

A *fundamental region* for the symmetry group of a pattern is a closed topological disk such that copies of it cover the plane without gaps or overlaps.

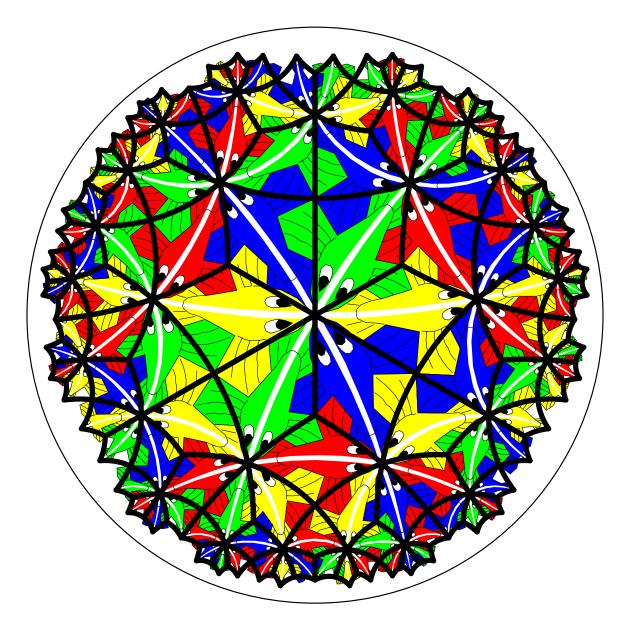
In Escher patterns the motif can usually be used as a fundamental region.

For a pattern with a finite motif, the fundamental region can be taken to be a convex polygon. This polygon will contain exactly the right pieces of the motif to reconstruct it.

Replication using copies of such a fundamental polygon will also create the entire pattern of motifs.

A Fundamental Polygon Tessellation

A quadrilateral can used as the fundamental region for the *Circle Limit III* pattern, as shown below



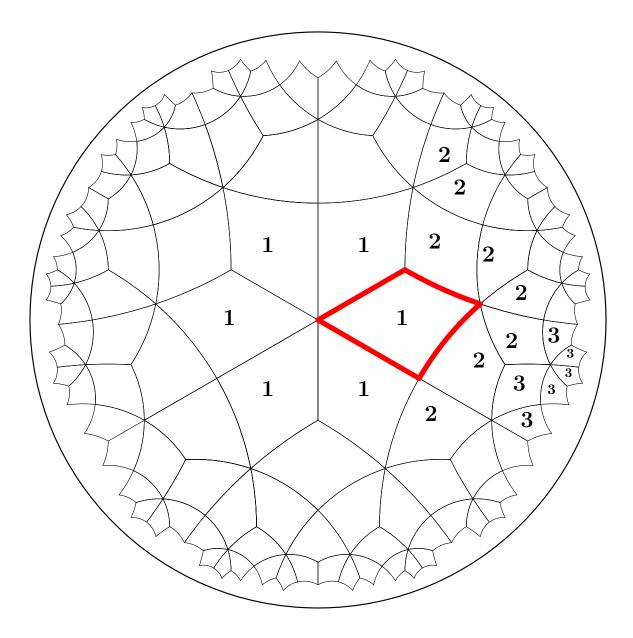
Layers of Fundamental Polygons

The fundamental polygons are arranged in *layers* (also called *coronas* in tiling literature), which are defined inductively.

The first layer consists of all polygons with a vertex at the center of the bounding circle.

The *boldmath* $k+1^{st}$ *layer* consists of all polygons sharing an edge or vertex with the k^{th} layer (and no previous layers).

A Polygon Tessellation Showing Layers



The polygon tessellation, with a fundamental polygon emphasized and parts of layers 1, 2, and 3 labeled.

Specification of the Fundamental Polygon

We use $\{p; q_1, q_2, \ldots, q_p\}$ to denote the fundamental polygon with p sides and q_i polygons meeting at vertex i (so the interior angle at the i^{th} vertex is $2\pi/q_i$).

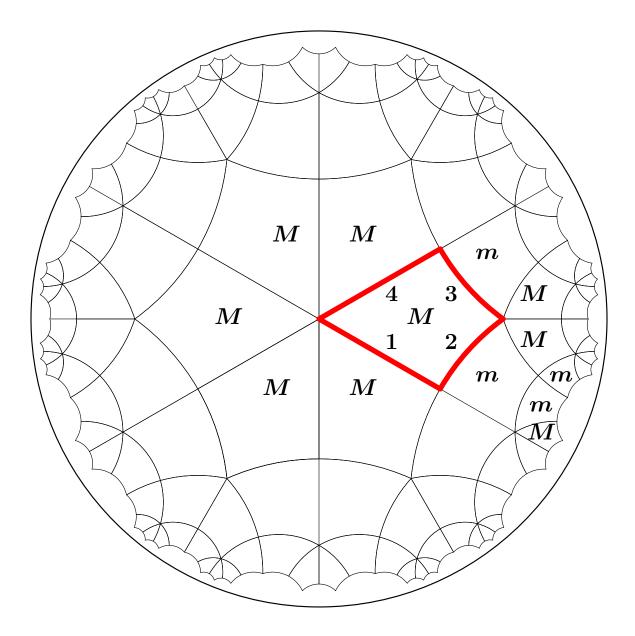
The condition that a polygon is a fundamental polygon for a hyperbolic tessellation is that:

$$\sum\limits_{i=1}^p rac{1}{q_i} < rac{p}{2}-1$$

(which generalizes the condition (p-2)(q-2) > 4 for regular tessellations). If the "<" is replaced with "=" or ">", one obtains a Euclidean or spherical tessellation respectively.

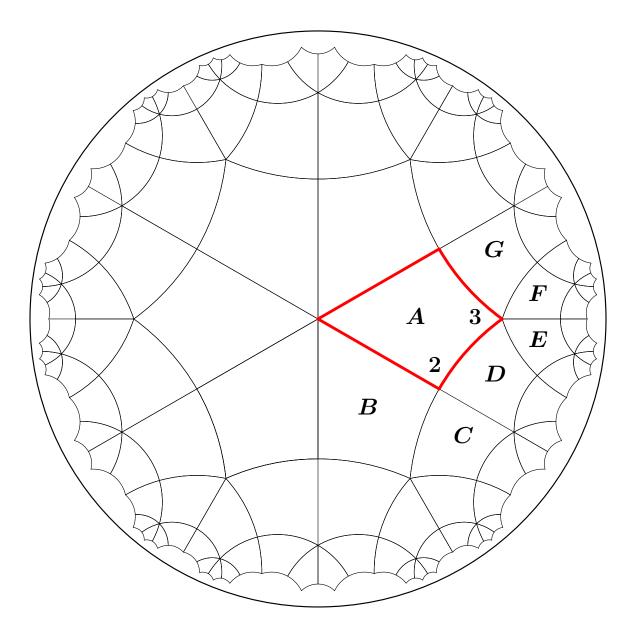
We say a polygon of a tessellation has *minimal exposure* if it shares an edge with a previous layer; we say it has *minimal exposure* if it shares a vertex with a previous layer.

Minimal and Maximal Exposure



The polygons with minimal exposure are marked with *m*'s, and those with maximal exposure are marked with *M*'s.

Some Polygons and Replication



This figure shows how recursive calls in the replication work starting at polygon A. Polygon vertices are numbered in counter-clockwise order with vertex i at the right end of edge i looking outward.

The Top-level "Driver" for Replication

The replication process starts with the following toplevel "driver", which calls the recursive routine replicateMotif() to create the rest of the pattern.

```
replicate ( motif )
{
   for ( j = 1 to q[1] )
   {
      qTran = edgeTran[1] ;
      replicateMotif(motif,qTran,2,MAX_EXP);
      qTran = addToTran ( qTran, -1 ) ;
   }
}
```

Utilities to Support Replication

Functions to compute transformations, based on tranMult() which multiplies two transformations and returns the product.

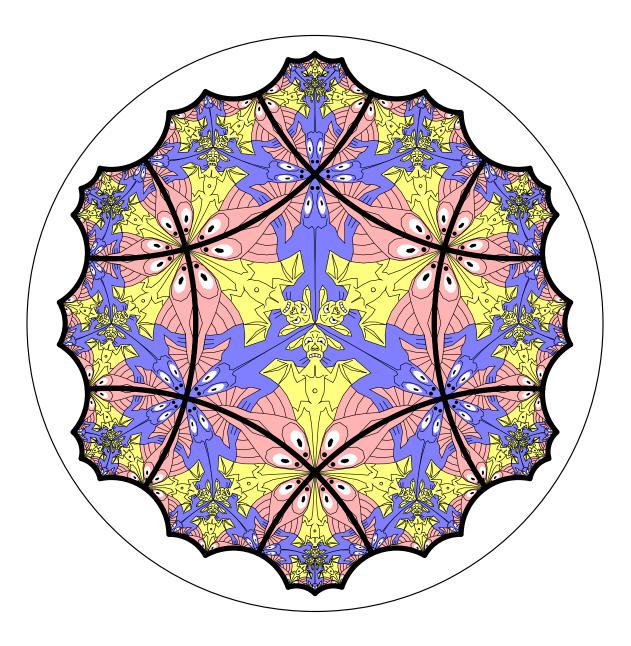
```
Arrays that control replication.
```

pShiftArray[] = { 1, 0 }; verticesToSkipArray[] = { 3, 2 }; qShiftArray[] = { 0, -1 }; polygonsToSkipArray[] = { 2, 3 }; exposureArray[] = { MAX_EXP, MIN_EXP };

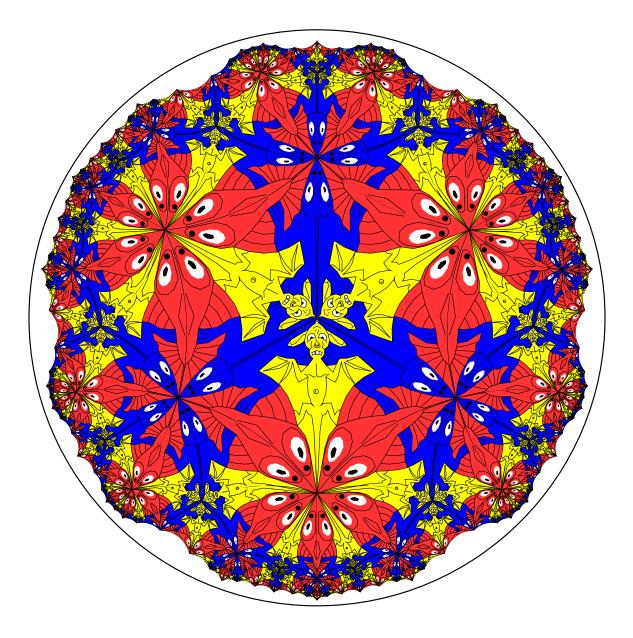
The Recursive replicateMotif()

```
replicateMotif(motif, inTran, layer, exposure)
ł
  drawMotif ( motif, inTran ) ;
  if ( layer < maxLayers )
  ł
    pShift = pShiftArray[exposure] ;
    verticesToDo = p -
                  verticesToSkipArray[exposure] ;
    for ( i = 1 to verticesToDo )
    {
      pTran = computeTran(initialTran, pShift) ;
      first_i = ( i == 1 ) ;
      qTran = addToTran(pTran, qShiftArray[first_i]) ;
      if ( pTran.orientation > 0 )
         vertex = (pTran.pposition-1) % p ;
      else
         vertex = pTran.pposition ;
      polygonsToDo = q[vertex] -
                    polygonsToSkipArray[first_i] ;
      for (j = 1 \text{ to polygonsToDo})
      {
        first_j = ( j == 1 ) ;
        newExpose = exposureArray[first_j] ;
        replicateMotif(motif, qTran, layer+1, newExpose) ;
        qTran = addToTran ( qTran, -1 ) ;
      }
      pShift = (pShift + 1) % p ;
    }
  }
}
```

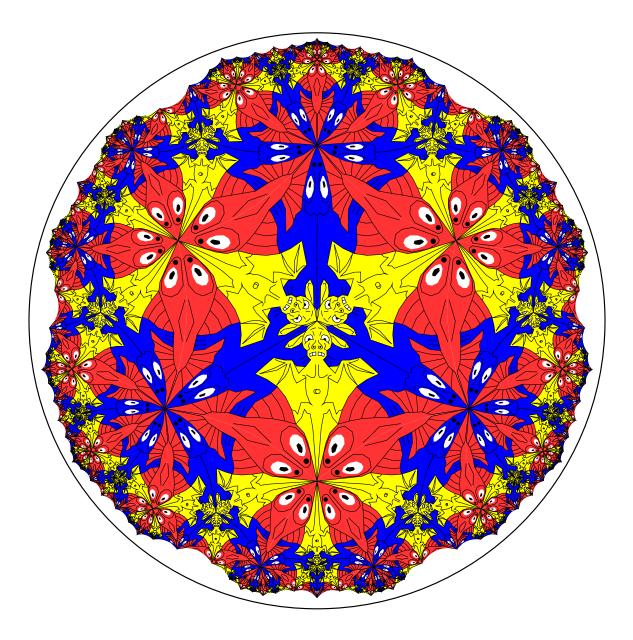
A "Three Element" Pattern Using {6,4}



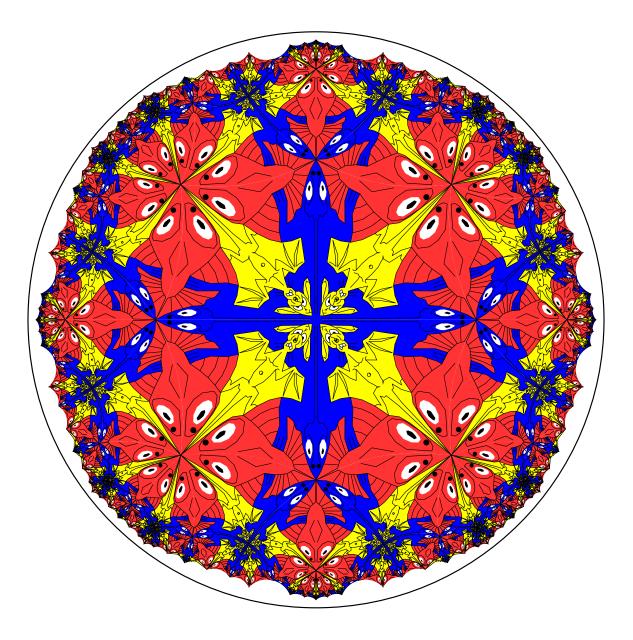
A "Three Element" Pattern with Different Numbers of Animals Meeting at their Heads



A "Three Element" Pattern with 3 Bats, 5 Lizards, and 4 Fish Meeting at their Heads



A "Three Element" Pattern with 3 Bats, 5 Lizards, and 4 Fish Meeting at their Heads



Future Work

- Allow vertices at infinity.
- Create a program to transform between different fundamental polygons.
- Automatically generate patterns with color symmetry.