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H.S.M. Coxeter’s 1957 Figure



Escher’s Circle Limit I



A rendition of Circle Limit II



Escher’s Circle Limit III



Escher’s Circle Limit IV



Hyperbolic Geometry and Regular Tessellations

◮ In 1901, David Hilbert proved that, unlike the sphere, there was no
isometric (distance-preserving) embedding of the hyperbolic plane
into ordinary Euclidean 3-space.

◮ Thus we must use models of hyperbolic geometry in which Euclidean
objects have hyperbolic meaning, and which must distort distance.

◮ One such model is the Poincaré disk model. The hyperbolic points
in this model are represented by interior point of a Euclidean circle
— the bounding circle. The hyperbolic lines are represented by
(internal) circular arcs that are perpendicular to the bounding circle
(with diameters as special cases).

◮ This model is appealing to artests since (1) angles have their
Euclidean measure (i.e. it is conformal), so that motifs of a
repeating pattern retain their approximate shape as they get smaller
toward the edge of the bounding circle, and (2) it can display an
entire pattern in a finite area.



Poincaré Disk Model of Hyperbolic Geometry



Repeating Patterns
A repeating pattern is composed of congruent copies of the motif.



Regular Tessellations

◮ The regular tessellation, {p, q}, is an important kind of repeating
pattern composed of regular p-sided polygons meeting q at a vertex.

◮ If (p − 2)(q − 2) < 4, {p, q} is a spherical tessellation (assuming
p > 2 and q > 2 to avoid special cases).

◮ If (p − 2)(q − 2) = 4, {p, q} is a Euclidean tessellation.

◮ If (p − 2)(q − 2) > 4, {p, q} is a hyperbolic tessellation. The next
slide shows the {6, 4} tessellation.

◮ Escher based his 4 “Circle Limit” patterns, and many of his
spherical and Euclidean patterns on regular tessellations.



The Regular Tessellation {6, 4}



A Table of the Regular Tessellations
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A Family of Circle Limit III Patterns

We use the symbolism (p,q,r) to denote a pattern of fish in which p
meet at right fin tips, q meet at left fin tips, and r fish meet at their
noses. Of course p and q must be at least three, and r must be odd so
that the fish swim head-to-tail (as they do in Circle Limit III).

Escher’s Circle Limit III pattern itself would be labeled (4,3,3) in this
notation.



A (5,3,3) Pattern



A (4,4,3) Pattern



A (5,5,3) Pattern



A (3,3,5) Pattern



A (3,4,3) Pattern



A (3,5,3) Pattern



A Butterfly Pattern Based on the {5,4} Tessellation



The Family of Butterfly Patterns

◮ Theoretically, we can create a butterfly pattern based on {p, q} like
the one above for any values of p and q provided p ≥ 3 and q ≥ 3.

◮ For these patterns, p butterflies meet at their left front wing tips
and q butterflies meet at their right rear wings.

◮ Escher created only one member of this family of patterns, his
Regular Division Drawing Number 70, based on the Euclidean
hexagon tessellation {6, 3}. At least 3 colors are needed to satisfy
the map-coloring principle at the meeting points of right rear wings.

◮ Following Escher, we add the restriction to our patterns that all
circles on the butterfly wings around a p-fold meeting point of left
wingtips be a different color from the butterflies meeting there.

◮ The hyperbolic butterfly pattern based on the {5, 4} tessellation
requires at least five colors for color symmetry since five is prime,
and six colors if the circles on the wings are to be a different color.



Escher’s 3-colored butterfly pattern
Regular Division Drawing Number 70



A 3-colored (8, 3) butterfly pattern



A 6-colored (5, 5) butterfly pattern



An 8-colored (7, 3) butterfly pattern



An 8-colored (7, 4) butterfly pattern



A 3-colored (6, 4) butterfly pattern
that violates the color of circles convention



A (10, 4) butterfly pattern showing distortion for large p



Triply Periodic Polyhedra
◮ A triply periodic polyhedron is a (non-closed) polyhedron that

repeats in three different directions in Euclidean 3-space.

◮ We will consider the special case of uniform triply periodic
polyhedra which have the same vertex figure at each vertex —
i.e. there is a symmetry of the polyhedron that takes any vertex to
any other vertex..

◮ We will mostly discuss a speciallization of uniform triply periodic
polyhedra: regular triply periodic polyhedra which are
“flag-transitive” — there is a symmetry of the polyhedron that
takes any vertex, edge containing that vertex, and face containing
that edge to any other such (vertex, edge, face) combination.

◮ In 1926 John Petrie and H.S.M. Coxeter proved that there are
exactly three regular triply periodic polyhedra, which Coxeter
denoted {4, 6|4}, {6, 4|4}, and {6, 6|3}, where {p, q|r} denotes a
polyhedron made up of p-sided regular polygons meeting q at a
vertex, and with regular r -sided holes.



Angels and Devils on the {4, 6|4} polyhedron



The corresponding Angels and Devils pattern in the hyperbolic
plane



Relation between periodic polyhedra and regular tessellations
— a 2-Step Process

◮ (1) Some triply periodic polyhedra approximate TPMS’s.

As a bonus, some triply periodic polyhedra contain embedded
Euclidean lines which are also lines embedded in the corresponding
TPMS.

◮ (2) As a minimal surface, a TPMS has negative curvature (except
for isolated points of zero curvature), and so its universal covering
surface also has negative curvature and thus has the same
large-scale geometry as the hyperbolic plane.

So the polygons of the triply periodic polyhedron can be transferred
to the polygons of a corresponding regular tessellation of the
hyperbolic plane.

◮ We show this relationship in the next slides.



A pattern of fish on the {4, 6|4} polyhedron
— showing colored embedded lines



Schwarz’s P-surface — approximated by the previous triply
periodic polyhedron, and showing corresponding embedded lines



A close-up of Schwarz’s P-surface showing corresponding
embedded lines and “skew rhombi”



The pattern of fish “unfolded” onto a repeating pattern of the
hyperbolic plane — showing the embedded lines as hyperbolic

lines, which bound the “skew rhombi”.



A close-up of a vertex of the {4, 6|4} polyhedron



The squashed {4, 6|4} polyhedron



Patterns on the {6, 4|4} Polyhedron

A pattern of angels and devils on the {6, 4|4} polyhedron



A Pattern of Fish on the {6, 4|4} Polyhedron



A top view of the fish on the {6, 4|4} polyhedron — showing fish
along embedded lines



The corresponding hyperbolic pattern of fish — a version of
Escher’s Circle Limit I pattern with 6-color symmetry



A Pattern of Fish on the {6, 6|3} Polyhedron



A top view of the fish on the {6, 6|3} polyhedron — showing a
vertex



The corresponding hyperbolic pattern of fish — based on the
{6, 6} tessellation



Patterns of Fish on a {3, 8} Polyhedron

Using a uniform triply periodic {3, 8} polyhedron, we show a pattern of
fish inspired by Escher’s hyperbolic print Circle Limit III, which is based
on the regular {3, 8} tessellation. This polyhedron is related to Schwarz’s
D-surface, a TRMS with the topology of a thickened diamond lattice,
which has embedded lines. The red, green, and yellow fish swim along
those lines (the blue fish swim in loops around the “waists”). We show:

◮ A piece of the triply periodic polyhedron.

◮ A corresponding piece of the patterned polyhedron.

◮ A piece of Schwarz’s D-surface showing embedded lines.

◮ Escher’s Circle Limit III with the equilateral triangle tessellation
superimposed.

◮ A large piece of the patterned polyhedron.

◮ A top view of the large piece.



A piece of the triply periodic polyhedron



A corresponding piece of the patterned polyhedron



A piece of Schwarz’s D-surface showing embedded lines



Escher’s Circle Limit III with the equilateral triangle tessellation
superimposed



A large piece of the patterned polyhedron



A top view of the large piece



Future Work

◮ Put other patterns on the regular triply periodic polyhedra,
exploiting their embedded lines.

◮ Place patterns on non-regular, uniform triply periodic polyhedra.

◮ Put patterns on non-uniform triply periodic polyhedra — especially
those that more closely approximate triply periodic minimal surfaces.

◮ Draw patterns on TPMS’s — the gyroid, for example.
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