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Abstract:

The Dutch artist M.C. Escher created many repeating symmetric patterns.  In fact he utilized each of the three

“classical” geometries: the sphere, the Euclidean plane, and the hyperbolic plane.   Many of Escher’s patterns are

based on regular tessellations – tilings by regular polygons.  Replicating a repeating pattern of the sphere or

Euclidean  plane  from  a  motif  is  straightforward,  but  replicating  a  repeating  hyperbolic  pattern  presents

challenges.  In this paper we describe an algorithm for replicating repeating patterns of the hyperbolic plane.

1. INTRODUCTION 

M.C. Escher is perhaps best known for his repeating patterns of the Euclidean plane, but he

also created repeating spherical and hyperbolic patterns.  Due to the difficulties inherent in

creating hyperbolic patterns, Escher only created four of them: Circle Limit I, Circle Limit II,

Circle Limit III, and Circle Limit IV, each being based on a regular hyperbolic tessellation.

Figure 1 shows how Circle Limit I is based on the regular tessellation {6,4}.

 

Figure 1.  The {6,4}tessellation superimposed on Escher’s Circle Limit I pattern.



Our ultimate goal is to create aesthetically pleasing repeating hyperbolic patterns. There are

two steps involved in creating a repeating pattern in one of the classical geometries: first a

motif  must  be designed,  and second the motif  must  be transformed around the  plane  (or

sphere).  In a previous paper we described how to design a hyperbolic motif [2].  The goal of

this paper is to describe a computer algorithm to perform the second step – transformation of

the motif around the plane; this process is called  replication.  More than 20 years ago we

published a limited replication algorithm that could not produce the Circle Limit I pattern for

example [1].  The replication of a hyperbolic pattern is quite tedious when done by hand, as

Escher did.  This is undoubtedly the reason he didn’t create more hyperbolic patterns.

In  the  next  section  we  review  basic  concepts,  including  hyperbolic  geometry,  repeating

patterns, and regular tessellations.  Then we describe the replication algorithm.  Next we show

some sample patterns.  Finally we indicate directions of future research.

2. HYPERBOLIC GEOMETRY AND REGULAR TESSELLATIONS

Hyperbolic geometry is the least familiar of the three classical geometries. This is probably

because  it  has  no  smooth  distance-preserving  embedding  into  ordinary  Euclidean  space,

unlike  the  sphere  and  the  Euclidean  plane.   This  was  proved  in  1901  by  the  German

mathematician David Hilbert.   Thus we must rely on models of hyperbolic  geometry that

distort distance perforce.

Escher used the Poincaré circle model of hyperbolic geometry.  This model was particularly

appealing to Escher since it represents the entire hyperbolic plane within a finite area – the

interior  of a Euclidean circle.   It  also has  a  second aesthetically  appealing  property:  it  is

conformal, which means that the hyperbolic measure of an angle is the same as its Euclidean

measure.  The conformal property also means that in repeating patterns, transformed copies of

the motif have roughly the same shape, and so remain recognizable even if they are small to

our Euclidean eyes.  The “points” of this model are just the interior points of the  bounding

circle; the “lines” are circular arcs orthogonal to the bounding circle (including diameters as

special cases).  The arcs making up the {6,4} tessellation in Figure 1 represent hyperbolic

lines, as do the backbones of the fish.  Note that distance is measured in such a way that all the

white  fish  in  Figure  1  are  the  same  hyperbolic  size,  as  are  the  black  fish.   Thus  equal

hyperbolic distances are represented by ever smaller Euclidean distances toward the edge of

the bounding circle.



A repeating pattern of one of the classical geometries is made up of congruent copies of a

basic subpattern or motif.  The copies of the motif should not overlap, and a characteristic of

Escher’s repeating patterns is that there are no gaps either – that is, the copies of the motif

exactly  fill  up  the  space  (unlike  standard  wallpaper  patterns  in  which  there  is  usually

“background” between the motif figures).  In Escher’s Circle Limit I, a motif consists of half a

white  fish together  with  half  an  adjacent  black  fish.  Such a  motif  is  shown in  Figure 2.

Similarly one of the hexagons in the tessellation of Figure 1 can be decomposed into 12 right

triangles by diameters and perpendicular bisectors of sides of the hexagon; one such triangle is

the motif for the hexagon tessellation (ignoring the fish).

Figure 2. A motif for the Circle Limit I pattern.

An  important  kind  of  repeating  pattern  in  any  of  the  classical  geometries  is  the  regular

tessellation, denoted {p,q}, by regular p-sided polygons, or p-gons, meeting q at each vertex.

It  is  necessary that  (p-2)(q-2)  > 4 for  {p,q} to  be hyperbolic  (if  (p-2)(q-2)  = 4,  {p,q} is

Euclidean, and if (p-2)(q-2) < 4, {p,q} is spherical).  In addition to Circle Limit I, Escher also

used {6,4} as  the underlying  tessellation  for  Circle  Limit  IV.  Escher  use  the  tessellation

{8,3}as the basis for both  Circle Limit II  and Circle Limit III.  Figure 3 shows how Circle

Limit III is based on the {8,3} tessellation.



Figure 3. The {8,3} tessellation superimposed on Escher’s Circle Limit III pattern.

3. THE REPLICATION ALGORITHM

The process of transforming copies of the motif  around the hyperbolic plane and drawing

them is  called  replication.   Replication  makes  sense  for  repeating  Euclidean  or  spherical

patterns too.  However, those cases are easier since there are only a finite number of motif

copies for spherical patterns, and Euclidean patterns can be formed by repeatedly applying

translations in two different directions (after first applying a few reflections, rotations, or glide

reflections to obtain a “translation unit” which we call a “p-gon pattern” below).

Since we wish to replicate patterns that are based on the {p,q}tessellations, we assume that the

motif is contained in a p-gon.  Then in order to simplify the algorithm, we first form what we

call  the  p-gon  pattern by  appropriately  rotating  the  motif  about  the  p-gon  center  and/or

reflecting it across diameters and perpendicular bisectors of edges until the p-gon is filled with

motifs.   Some  of  the  motif  copies  may  protrude  from  the  p-gon  as  long  as  there  are

corresponding indentations so that the final pattern will fit together like a jigsaw puzzle.  Only

some of the reflections may be used, and the rotations may be some (but not all) multiples of

2π/p.  Figure 4 shows the p-gon pattern for the Circle Limit I pattern of Figure 1.  Here we

have used reflections across diameters (but not edge bisectors) and rotations by 120 and 240

degrees (but not 60, 180, or 300 degrees).                                                            



Figure 4. The p-gon pattern for the Circle Limit I pattern.

We can now replicate the desired pattern by transforming the whole p-gon pattern around the

plane rather than each individual  copy of the motif,  which is  more efficient.   This is  the

algorithm we describe.   First, we note that the p-gons of a {p,q} tessellation are arranged in

layers.  The first layer is just the central p-gon (which is shown as the outline of the p-gon

pattern in Figure 4).  The k+1st layer consists of all the p-gons sharing an edge or vertex with a

p-gon in the kth   layer (and not in any previous layer).  The tessellations of Figures 1 and 3

show the first three layers.  Since we cannot draw the theoretically infinite number of copies

of the motif, we only draw a finite number of layers (which gives reasonable results since a

few layers are enough to mostly fill up the bounding circle).  Second, each p-gon of a layer is

of one of two types: (1) it shares an edge with the previous layer and thus shares p-3 edges

with the next layer and we say it has minimum exposure with that layer, or (2) it only shares a

vertex with the previous layer, thus sharing p-2 edges with the next layer and has maximum

exposure.  We abbreviate these values as MIN_EXP and MAX_EXP respectively.

There are two parts to the replication algorithm: (1) a routine replicate(), which draws

the first layer and calls the second routine, (2) recursiveRep(), which recursively draws

the  remaining  layers.   A tiling  by a  p-gon pattern  is  specified  by  how the  p-gon pattern

transforms  across  each  of  the  p-gon  edges;  these  transformations  are  stored  in  the  array

edgeTran[].  We use a function addToTran()(shown below) to calculate an extension



of a transformation by one of the edgeTran[]s.  We also keep the number of layers to be

drawn in the global variable maxLayer.  Here is pseudocode for replicate():

Replicate ( motif ) {

   drawPgon ( motif, IDENT ) ;  // Draw central p­gon pattern

   for ( i = 1 to p ) {         // Iterate over each vertex

      qTran = edgeTran[i­1]

      for ( j = 1 to q­2 ) {    // Iterate around a vertex

         exposure = (j == 1) ? MIN_EXP : MAX_EXP ;

         recursiveRep ( motif, qTran, 2, exposure ) ;

         qTran = addToTran ( qTran, ­1 ) ; //­1 anticlockwise

      }

   }

}

In  order  to  describe  the  function  addToTran(),  we  first  note  that  our  transformations

contain (in addition to a matrix) the orientation and an index, pPosition, of the edge across

which the last transformation was made (edgeTran[i].pPosition is the edge that is

matched with edge i in the tiling).  Here is the code for addToTran():

addToTran ( tran, shift ) {

   if ( shift % p == 0 ) return tran ;

   else                  return computeTran ( tran, shift ) ;

}

where computeTran() is:

computeTran ( tran, shift ) {

   newEdge = (tran.pPosition + tran.orientation * shift) % p ;

   return tranMult ( tran, edgeTran[newEdge] ) ;

}

and where tranMult ( t1, t2 ) multiplies the matrices and orientations, sets the

pPosition to t2.pPosition, and returns the result.  



Here is recursiveRep():

recursiveRep ( motif, initialTran, layer, exposure ) {

   DrawPgon ( motif, initialTran ) ;  // Draw the p­gon pattern

   if ( layer < maxLayer ) {          // If any more layers

      pShift = ( exposure == MIN_EXP ) ? 1 : 0 ;

      verticesToDo = ( exposure == MIN_EXP ) ? p­3 : p­2 ;

      for ( i = 1 to verticesToDo ) {  // Iterate over vertices

         pTran = computeTran ( initialTran, pShift ) ;

         qSkip = ( i == 1 ) ? ­1 : 0 ;

         qTran = addToTran ( pTran, qSkip ) ;

         pgonsToDo = ( i == 1 ) ? q­3 : q­2 ;

         for ( j = 1 to pgonsToDo ) { // Iterate about a vertex

            newExposure = ( i == 1 ) ? MIN_EXP : MAX_EXP ;

            recursiveRep(motif, qTran, layer+1, newExposure);

            qTran = addToTran ( qTran, ­1 ) ;

         }

         pShift = (pShift + 1) % p ;  // Advance to next vertex

      }

   }

}

where  drawPgon() simply  multiplies  each  of  the  point  vectors  of  the  motif  by  the

transformation and draws the transformed motif.  The algorithm above is a simplified version

that draws multiple copies for the cases p = 3 or q = 3; the same general technique works for

those cases though, but with different values of the variables pShift, verticesToDo, qSkip, etc.

4. SAMPLE PATTERNS

In this section we show some sample patterns based on regular hyperbolic tessellations. In

Figure 5 we show a sample pattern based on the {5,5} tessellation.  The fish in this pattern are

designed after the fish in Escher’s Notebook Drawing 20 [3 page 131], which is based on the

Euclidean tessellation {4.4}.



Figure 5. A fish pattern based on the {5,5} tessellation.

Figure 6 shows a hyperbolic pattern of lizards based on the {8,3} tessellation.  The fish are

drawn in the style of Escher’s Notebook Drawing 25 [3 page 135], which is based on the

Euclidean {6,3} tessellation.

Figure 6. A pattern of lizards based on the {8,3} tessellation.

Figure 7 shows a butterfly pattern based on the {7,3} tessellation.  The butterflies are drawn in

the  style  of  Escher’s  Notebook  Drawing  70  [3  page  172],  which,  is  also  based  on  the

Euclidean {6,3} tessellation.



Figure 7. A butterfly pattern based on the {7,3} tessellation.

5. CONCLUSIONS AND FUTURE WORK

We have presented and algorithm that  can replicate  a repeating pattern that  is  based on a

regular tessellation of the hyperbolic plane.  We have also shown a few patterns created with

this algorithm.  It is possible that similar algorithms could also replicate patterns based on the

infinite regular tessellations {∞,q} with q-sided infinite polygons or {p,∞}with infinite-sided

polygons meeting p at a vertex.  Another area of research would be to automate the process of

generating patterns with color symmetry.
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