
Proceedings of Math and Design, Blumenau, Brazil, July 2007

CREATING REGULAR REPEATING HYPERBOLIC PATTERNS

Douglas Dunham, University of Minnesota Duluth, USA

Keywords: computer algorithms, repeating patterns, hyperbolic geometry, M.C. Escher art.

Abstract:

The Dutch artist M.C. Escher created many repeating symmetric patterns. In fact he utilized each of the three

“classical” geometries: the sphere, the Euclidean plane, and the hyperbolic plane. Many of Escher’s patterns are

based on regular tessellations – tilings by regular polygons. Replicating a repeating pattern of the sphere or

Euclidean plane from a motif is straightforward, but replicating a repeating hyperbolic pattern presents

challenges. In this paper we describe an algorithm for replicating repeating patterns of the hyperbolic plane.

1. INTRODUCTION

M.C. Escher is perhaps best known for his repeating patterns of the Euclidean plane, but he

also created repeating spherical and hyperbolic patterns. Due to the difficulties inherent in

creating hyperbolic patterns, Escher only created four of them: Circle Limit I, Circle Limit II,

Circle Limit III, and Circle Limit IV, each being based on a regular hyperbolic tessellation.

Figure 1 shows how Circle Limit I is based on the regular tessellation {6,4}.

Figure 1. The {6,4}tessellation superimposed on Escher’s Circle Limit I pattern.

Our ultimate goal is to create aesthetically pleasing repeating hyperbolic patterns. There are

two steps involved in creating a repeating pattern in one of the classical geometries: first a

motif must be designed, and second the motif must be transformed around the plane (or

sphere). In a previous paper we described how to design a hyperbolic motif [2]. The goal of

this paper is to describe a computer algorithm to perform the second step – transformation of

the motif around the plane; this process is called replication. More than 20 years ago we

published a limited replication algorithm that could not produce the Circle Limit I pattern for

example [1]. The replication of a hyperbolic pattern is quite tedious when done by hand, as

Escher did. This is undoubtedly the reason he didn’t create more hyperbolic patterns.

In the next section we review basic concepts, including hyperbolic geometry, repeating

patterns, and regular tessellations. Then we describe the replication algorithm. Next we show

some sample patterns. Finally we indicate directions of future research.

2. HYPERBOLIC GEOMETRY AND REGULAR TESSELLATIONS

Hyperbolic geometry is the least familiar of the three classical geometries. This is probably

because it has no smooth distance-preserving embedding into ordinary Euclidean space,

unlike the sphere and the Euclidean plane. This was proved in 1901 by the German

mathematician David Hilbert. Thus we must rely on models of hyperbolic geometry that

distort distance perforce.

Escher used the Poincaré circle model of hyperbolic geometry. This model was particularly

appealing to Escher since it represents the entire hyperbolic plane within a finite area – the

interior of a Euclidean circle. It also has a second aesthetically appealing property: it is

conformal, which means that the hyperbolic measure of an angle is the same as its Euclidean

measure. The conformal property also means that in repeating patterns, transformed copies of

the motif have roughly the same shape, and so remain recognizable even if they are small to

our Euclidean eyes. The “points” of this model are just the interior points of the bounding

circle; the “lines” are circular arcs orthogonal to the bounding circle (including diameters as

special cases). The arcs making up the {6,4} tessellation in Figure 1 represent hyperbolic

lines, as do the backbones of the fish. Note that distance is measured in such a way that all the

white fish in Figure 1 are the same hyperbolic size, as are the black fish. Thus equal

hyperbolic distances are represented by ever smaller Euclidean distances toward the edge of

the bounding circle.

A repeating pattern of one of the classical geometries is made up of congruent copies of a

basic subpattern or motif. The copies of the motif should not overlap, and a characteristic of

Escher’s repeating patterns is that there are no gaps either – that is, the copies of the motif

exactly fill up the space (unlike standard wallpaper patterns in which there is usually

“background” between the motif figures). In Escher’s Circle Limit I, a motif consists of half a

white fish together with half an adjacent black fish. Such a motif is shown in Figure 2.

Similarly one of the hexagons in the tessellation of Figure 1 can be decomposed into 12 right

triangles by diameters and perpendicular bisectors of sides of the hexagon; one such triangle is

the motif for the hexagon tessellation (ignoring the fish).

Figure 2. A motif for the Circle Limit I pattern.

An important kind of repeating pattern in any of the classical geometries is the regular

tessellation, denoted {p,q}, by regular p-sided polygons, or p-gons, meeting q at each vertex.

It is necessary that (p-2)(q-2) > 4 for {p,q} to be hyperbolic (if (p-2)(q-2) = 4, {p,q} is

Euclidean, and if (p-2)(q-2) < 4, {p,q} is spherical). In addition to Circle Limit I, Escher also

used {6,4} as the underlying tessellation for Circle Limit IV. Escher use the tessellation

{8,3}as the basis for both Circle Limit II and Circle Limit III. Figure 3 shows how Circle

Limit III is based on the {8,3} tessellation.

Figure 3. The {8,3} tessellation superimposed on Escher’s Circle Limit III pattern.

3. THE REPLICATION ALGORITHM

The process of transforming copies of the motif around the hyperbolic plane and drawing

them is called replication. Replication makes sense for repeating Euclidean or spherical

patterns too. However, those cases are easier since there are only a finite number of motif

copies for spherical patterns, and Euclidean patterns can be formed by repeatedly applying

translations in two different directions (after first applying a few reflections, rotations, or glide

reflections to obtain a “translation unit” which we call a “p-gon pattern” below).

Since we wish to replicate patterns that are based on the {p,q}tessellations, we assume that the

motif is contained in a p-gon. Then in order to simplify the algorithm, we first form what we

call the p-gon pattern by appropriately rotating the motif about the p-gon center and/or

reflecting it across diameters and perpendicular bisectors of edges until the p-gon is filled with

motifs. Some of the motif copies may protrude from the p-gon as long as there are

corresponding indentations so that the final pattern will fit together like a jigsaw puzzle. Only

some of the reflections may be used, and the rotations may be some (but not all) multiples of

2π/p. Figure 4 shows the p-gon pattern for the Circle Limit I pattern of Figure 1. Here we

have used reflections across diameters (but not edge bisectors) and rotations by 120 and 240

degrees (but not 60, 180, or 300 degrees).

Figure 4. The p-gon pattern for the Circle Limit I pattern.

We can now replicate the desired pattern by transforming the whole p-gon pattern around the

plane rather than each individual copy of the motif, which is more efficient. This is the

algorithm we describe. First, we note that the p-gons of a {p,q} tessellation are arranged in

layers. The first layer is just the central p-gon (which is shown as the outline of the p-gon

pattern in Figure 4). The k+1st layer consists of all the p-gons sharing an edge or vertex with a

p-gon in the kth layer (and not in any previous layer). The tessellations of Figures 1 and 3

show the first three layers. Since we cannot draw the theoretically infinite number of copies

of the motif, we only draw a finite number of layers (which gives reasonable results since a

few layers are enough to mostly fill up the bounding circle). Second, each p-gon of a layer is

of one of two types: (1) it shares an edge with the previous layer and thus shares p-3 edges

with the next layer and we say it has minimum exposure with that layer, or (2) it only shares a

vertex with the previous layer, thus sharing p-2 edges with the next layer and has maximum

exposure. We abbreviate these values as MIN_EXP and MAX_EXP respectively.

There are two parts to the replication algorithm: (1) a routine replicate(), which draws

the first layer and calls the second routine, (2) recursiveRep(), which recursively draws

the remaining layers. A tiling by a p-gon pattern is specified by how the p-gon pattern

transforms across each of the p-gon edges; these transformations are stored in the array

edgeTran[]. We use a function addToTran()(shown below) to calculate an extension

of a transformation by one of the edgeTran[]s. We also keep the number of layers to be

drawn in the global variable maxLayer. Here is pseudocode for replicate():

Replicate (motif) {

 drawPgon (motif, IDENT) ; // Draw central p­gon pattern

 for (i = 1 to p) { // Iterate over each vertex

 qTran = edgeTran[i­1]

 for (j = 1 to q­2) { // Iterate around a vertex

 exposure = (j == 1) ? MIN_EXP : MAX_EXP ;

 recursiveRep (motif, qTran, 2, exposure) ;

 qTran = addToTran (qTran, ­1) ; //­1 anticlockwise

 }

 }

}

In order to describe the function addToTran(), we first note that our transformations

contain (in addition to a matrix) the orientation and an index, pPosition, of the edge across

which the last transformation was made (edgeTran[i].pPosition is the edge that is

matched with edge i in the tiling). Here is the code for addToTran():

addToTran (tran, shift) {

 if (shift % p == 0) return tran ;

 else return computeTran (tran, shift) ;

}

where computeTran() is:

computeTran (tran, shift) {

 newEdge = (tran.pPosition + tran.orientation * shift) % p ;

 return tranMult (tran, edgeTran[newEdge]) ;

}

and where tranMult (t1, t2) multiplies the matrices and orientations, sets the

pPosition to t2.pPosition, and returns the result.

Here is recursiveRep():

recursiveRep (motif, initialTran, layer, exposure) {

 DrawPgon (motif, initialTran) ; // Draw the p­gon pattern

 if (layer < maxLayer) { // If any more layers

 pShift = (exposure == MIN_EXP) ? 1 : 0 ;

 verticesToDo = (exposure == MIN_EXP) ? p­3 : p­2 ;

 for (i = 1 to verticesToDo) { // Iterate over vertices

 pTran = computeTran (initialTran, pShift) ;

 qSkip = (i == 1) ? ­1 : 0 ;

 qTran = addToTran (pTran, qSkip) ;

 pgonsToDo = (i == 1) ? q­3 : q­2 ;

 for (j = 1 to pgonsToDo) { // Iterate about a vertex

 newExposure = (i == 1) ? MIN_EXP : MAX_EXP ;

 recursiveRep(motif, qTran, layer+1, newExposure);

 qTran = addToTran (qTran, ­1) ;

 }

 pShift = (pShift + 1) % p ; // Advance to next vertex

 }

 }

}

where drawPgon() simply multiplies each of the point vectors of the motif by the

transformation and draws the transformed motif. The algorithm above is a simplified version

that draws multiple copies for the cases p = 3 or q = 3; the same general technique works for

those cases though, but with different values of the variables pShift, verticesToDo, qSkip, etc.

4. SAMPLE PATTERNS

In this section we show some sample patterns based on regular hyperbolic tessellations. In

Figure 5 we show a sample pattern based on the {5,5} tessellation. The fish in this pattern are

designed after the fish in Escher’s Notebook Drawing 20 [3 page 131], which is based on the

Euclidean tessellation {4.4}.

Figure 5. A fish pattern based on the {5,5} tessellation.

Figure 6 shows a hyperbolic pattern of lizards based on the {8,3} tessellation. The fish are

drawn in the style of Escher’s Notebook Drawing 25 [3 page 135], which is based on the

Euclidean {6,3} tessellation.

Figure 6. A pattern of lizards based on the {8,3} tessellation.

Figure 7 shows a butterfly pattern based on the {7,3} tessellation. The butterflies are drawn in

the style of Escher’s Notebook Drawing 70 [3 page 172], which, is also based on the

Euclidean {6,3} tessellation.

Figure 7. A butterfly pattern based on the {7,3} tessellation.

5. CONCLUSIONS AND FUTURE WORK

We have presented and algorithm that can replicate a repeating pattern that is based on a

regular tessellation of the hyperbolic plane. We have also shown a few patterns created with

this algorithm. It is possible that similar algorithms could also replicate patterns based on the

infinite regular tessellations {∞,q} with q-sided infinite polygons or {p,∞}with infinite-sided

polygons meeting p at a vertex. Another area of research would be to automate the process of

generating patterns with color symmetry.

References listed:

[1] Dunham, D. (1986) Hyperbolic symmetry, Computers & Mathematics with Applications.

12B Numbers 1&2, 1986, pp 139-153.

 [2] Dunham, D. (2004) Computer Design of Repeating Hyperbolic Patterns. In Proceedings

of Mathematics and Design 2004.

[3] Schattschneider, D. (2004) M.C. Escher: Visions of Symmetry. Harry N. Abrams, New

York, NY.

