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Triply Periodic Polyhedra
◮ A triply periodic polyhedron is a (non-closed) polyhedron that

repeats in three different directions in Euclidean 3-space.

◮ We consider semi-regular polyhedra composed of copies of a regular
p-sided polygon, or p-gon, and which are uniform — there is a
symmetry of the polyhedron that takes any vertex to any other
vertex. If q is the number of p-gons at a vertex, we can denote the
polyhedron by the Schläfli symbol {p, q}.

◮ We start by discussing more regular triply periodic polyhedra that
are “flag-transitive” — there is a symmetry of the polyhedron that
takes any vertex, edge containing that vertex, and face containing
that edge to any other such (vertex, edge, face) combination. These
are natural analogs of the Platonic solids and were called regular

skew polyhedra by H.S.M. Coxeter. In 1926, with John Petrie,
Coxeter proved there are exactly three such polyhedra, which he
denoted {4, 6 | 4}, {6, 4 | 4}, and {6, 6 | 3}, where {p, q | r} is the
extended Schläfli symbol that denotes a polyhedron made up of
p-gons meeting q at a vertex, and with regular r -sided holes.



Hyperbolic Geometry and Regular Tessellations

◮ In 1901, David Hilbert proved that, unlike the sphere, there was no
isometric (distance-preserving) embedding of the hyperbolic plane
into ordinary Euclidean 3-space.

◮ Thus we must use models of hyperbolic geometry in which Euclidean
objects have hyperbolic meaning, and which must distort distance.

◮ One such model is the Poincaré disk model. The hyperbolic points
in this model are represented by interior point of a Euclidean circle
— the bounding circle. The hyperbolic lines are represented by
(internal) circular arcs that are perpendicular to the bounding circle
(with diameters as special cases).

◮ This model is appealing to artists since (1) angles have their
Euclidean measure (i.e. it is conformal), so that motifs of a
repeating pattern retain their approximate shape as they get smaller
toward the edge of the bounding circle, and (2) it can display an
entire pattern in a finite area.



Repeating Patterns and Regular Tessellations

◮ A repeating pattern in any of the 3 “classical geometries”
(Euclidean, spherical, and hyperbolic geometry) is composed of
congruent copies of a basic subpattern or motif.

◮ The regular tessellation, denoted by the Schläfli symbol {p, q}, is an
important kind of repeating pattern composed of regular p-sided
polygons meeting q at a vertex.

◮ If (p − 2)(q − 2) < 4, {p, q} is a spherical tessellation (assuming
p > 2 and q > 2 to avoid special cases).

◮ If (p − 2)(q − 2) = 4, {p, q} is a Euclidean tessellation.

◮ If (p − 2)(q − 2) > 4, {p, q} is a hyperbolic tessellation. The next
slide shows the {6, 4} tessellation.

◮ Escher based his 4 “Circle Limit” patterns, and many of his
spherical and Euclidean patterns on regular tessellations.



The Regular Tessellation {4, 6}



The tessellation {4, 6} superimposed on the pattern of angular fish

of the title slide polyhedron



Relation between periodic polyhedra and regular tessellations

— a 2-Step Process
◮ (1) Some triply periodic polyhedra approximate triply periodic

minimal surfaces (TPMS’s).

As a bonus, some triply periodic polyhedra contain embedded
Euclidean lines which are also lines embedded in the corresponding
TPMS. The backbones of our fish lie along those lines and form
skew rhombi for regular skew polyhedra. If these skew rhombi are
spanned by “soap films”, one obtains the corresponding TPMS.

◮ (2) As a minimal surface, a TPMS has negative curvature (except
for isolated points of zero curvature), and so its universal covering
surface also has negative curvature and thus has the same
large-scale geometry as the hyperbolic plane.

So the polygons of the triply periodic polyhedron can be transferred
to the polygons of a corresponding regular tessellation of the
hyperbolic plane, and similarly a pattern on such a polyhedron can
be “lifted” to a universal covering pattern in the hyperbolic plane.



A Fish Pattern on the {4, 6 | 4} Polyhedron

The {4, 6 | 4} polyhedron is easiest to understand. It consists of invisible
“hub” cubes connected by “strut” cubes on all 6 faces of the hubs. We
show the 2-step relation between the patterned {4, 6 | 4} polyhedron and
its “universal covering pattern” as follows:

◮ The pattern of the Title Slide, which we have seen.

◮ Schwarz’s P-surface, the TPMS that is approximated by the
{4, 6 | 4} polyhedron, showing the embedded lines that correspond
to the backbone lines of the fish.

◮ A close-up of Schwarz’s P-surface showing the skew rhombi.

◮ A close-up of one of the vertices of the Title Slide polyhedron.

◮ The hyperbolic “universal covering pattern” of the Title Slide
polyhedron.



The triply periodic polyhedron of the Title Slide

— showing colored embedded lines and skew rhombi



Schwarz’s P-surface — approximated by the previous triply

periodic polyhedron, and showing corresponding embedded lines



A close-up of Schwarz’s P-surface showing corresponding

embedded lines and “skew rhombi”



A close-up of a vertex of the Title Slide polyhedron



The pattern of the Title Slide “lifted” to its hyperbolic “universal

covering pattern” — showing the embedded lines as hyperbolic

lines, which bound the “skew rhombi”.



A Fish Pattern on the {6, 4 | 4} Polyhedron

The {6, 4 | 4} polyhedron is dual to the {4, 6 | 4} polyhedron which we
just saw. In fact the backbone lines of the fish can be taken to be the
same lines in 3-space for both polyhedra. Thus they both approximate
the same TPMS, Schwarz’s P-surface. The {4, 6 | 4} polyhedron consists
of truncated octahedra in a cubic lattice arrangement and connected on
their (invisible) square faces. For this polyhedron we show:

◮ The pattern of fish on the {6, 4 | 4} polyhedron.

◮ A top view of the patterned polyhedron that shows how fish of a
single color line up along backbone lines.

◮ The hyperbolic “universal covering pattern” of the patterned
polyhedron.



The Pattern of Fish on the {6, 4 | 4} Polyhedron



A top view of the fish on the {6, 4 | 4} polyhedron — showing fish

along embedded lines



The hyperbolic universal covering pattern of fish — a version of

Escher’s Circle Limit I pattern with 6-color symmetry



A Pattern of Fish on the {6, 6 | 3} Polyhedron

The {6, 6 | 3} polyhedron is self-dual. It consists of truncated tetrahedra,
four of which share (invisible) equilateral triangular faces with an invisible
small regular tetrahedron. The embedded backbone lines of the fish also
form skew rhombi (but different than for the {4, 6 | 4} and {6, 4 | 4}
polyhedra). If we span these skew rhombi with “soap films”, we obtain
the corresponding TPMS, Schwarz’s D-surface which has the topology of
a thickened diamond lattice. For this polyhedron we show:

◮ The pattern of fish on the {6, 6 | 3} polyhedron.

◮ A “construction unit” of Schwarz’s D-surface within a rhombic
dodecahedron. Since rhombic dodecahedra tile space, this gives the
entire D-surface.

◮ A top view of the patterned polyhedron that shows a vertex.

◮ The hyperbolic “universal covering pattern” of the patterned
polyhedron.



The Pattern of Fish on the {6, 6 | 3} Polyhedron

— showing an invisible tetrahedral hub with

4 truncated tetrahedral “struts”



A piece of Schwarz’s D-surface showing embedded lines



A top view of the fish on the {6, 6 | 3} polyhedron — showing a

vertex



The corresponding universal covering pattern of fish — based on

the {6, 6} tessellation



A Pattern of Butterflies on a {3, 8} Polyhedron

We show a {3, 8} polyhedron decorated with a butterfly pattern that was
inspired by Escher’s Regular Division Drawing # 70. This polyhedron is
also related to Schwarz’s D-surface. We show:

◮ Butterflies on the {3, 8} polyhedron.

◮ Escher’s Regular Division Drawing # 70.

◮ A hyperbolic pattern of butterflies based on the {3, 8} tessellation
— the “universal covering pattern” of the patterned polyhedron.

◮ A construction unit of the {3, 8} polyhedron consisting of a regular
octahedral “hub” and four octahedral “struts” placed on alternate
faces of the hubs.

◮ Part of Schwarz’s D-surface corresponding to the construction unit.

◮ Another view of the patterned {3, 8} polyhedron down one of its
“tunnels”.



Butterflies on the {3, 8} polyhedron.



Escher’s Regular Division Drawing # 70 based on the {3, 6}
tessellation.



A pattern of butterflies based on the {3, 8} tessellation

— the “universal covering pattern” for the polyhedron.



A “construction unit” of the triply periodic polyhedron



A corresponding piece of Schwarz’s D-surface



A view down one of the “tunnels” of the {3, 8} polyhedron.



Butterflies on Another {3, 8} Polyhedron

We show the pattern of butterflies on a different the triply periodic {3, 8}
polyhedron. This butterfly pattern was also inspired by Escher’s Regular
Division Drawing # 70. Thus the hyperbolic “covering pattern” is the
same as for the previous polyhedron. This polyhedron has the same
topology as Schwarz’s P-surface, a TPMS with the topology of a
thickened version of the 3-D coordinate lattice. We show:

◮ Schwarz’s P-surface again — to compare with the polyhedron.

◮ The {3, 8} polyhedron, which is made up of snub cubes arranged in
a cubic lattice, attached by their (missing) square faces, and
alternating between left-handed and right-handed versions.

◮ A close-up of the patterned polyhedron.



Schwarz’s P-surface



Another Patterned {3, 8} Polyhedron



A Close-up of the {3, 8} Polyhedron



An Angels and Devils {4, 5} Pattern

We show:

◮ An angels and devils pattern on a {4, 5} polyhedron.

◮ The underlying {4, 5} polyhedron.

◮ The corresponding TPMS — an IWP surface.

◮ The corresponding hyperbolic universal covering pattern.



The {4, 5} Polyhedron with Angels and Devils



The underlying {4, 5} Polyhedron



A Piece of the Corresponding TPMS IWP Surface



The Hyperbolic “Universal Covering Pattern” with the {4, 5}
tessellation superimposed



A Fish Pattern on a {3, 8} Polyhedron



A Fractal Circle Pattern on a {3, 12} Polyhedron



Future Work

◮ Put other patterns on the regular skew polyhedra, exploiting their
embedded lines.

◮ Place patterns on semi-regular triply periodic polyhedra.

◮ Put patterns on other triply periodic polyhedra — especially those
that more closely approximate triply periodic minimal surfaces.

◮ Draw patterns on TPMS’s — the gyroid, for example.
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