
SubTile 2013, Marseille

An Algorithm to Create Hyperbolic Escher Tilings

Douglas Dunham
University of Minnesota Duluth

Duluth, Minnesota USA
Email: ddunham@d.umn.edu

Web: http://www.d.umn.edu/~ddunham

Outline

◮ Motivation — M.C. Escher examples

◮ Hyperbolic geometry, Repeating patterns, and regular tessellations

◮ The replication algorithm

◮ Other hyperbolic patterns inspired by Escher patterns

◮ Future research

Hyperbolic Art Pioneer: M.C. Escher
Four “Circle Limit” Patterns: Circle Limit I

Circle Limit II

Circle Limit III

Circle Limit IV

Creating Repeating Hyperbolic Patterns

A two-step process:

1. Design the fundamental tile or motif

2. Transform copies of the tile about the hyperbolic plane:
replication

Poincaré Disk Model of Hyperbolic Geometry

Repeating Patterns
A repeating pattern is composed of congruent copies of the motif.

The Regular Tessellations {p, q}

◮ The regular tessellation {p, q} is a tiling composed of regular
p-sided polygons, or p-gons meeting q at each vertex.

◮ It is necessary that (p − 2)(q − 2) > 4 for the tessellation to be
hyperbolic.

◮ If (p − 2)(q − 2) = 4 or (p − 2)(q − 2) < 4 the tessellation is
Euclidean or spherical respectively.

The Regular Tessellation {6, 4}

A Table of the Regular Tessellations

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

8 * * * * * * · · ·

7 * * * * * * · · ·

q 6 * * * * * · · ·

5 © * * * * * · · ·

4 © * * * * · · ·

3 © © © * * · · ·

3 4 5 6 7 8 · · ·

p

- Euclidean

tessellations

© - spherical

tessellations

* - hyperbolic

tessellations

The Replication Algorithm

To reduce the number of transformations and to simplify the
replication process, we form the p-gon pattern from all the copies
of the motif touching the center of the bounding circle.

◮ Thus in order to replicate the pattern, we apply
transformations to the p-gon pattern rather than to each
individual motif.

◮ Some parts of the p-gon pattern may protrude from the
enclosing p-gon, as long as there are corresponding
indentations, so that the final pattern will fit together like a
jigsaw puzzle.

◮ The p-gon pattern is often called the translation unit in
repeating Euclidean patterns.

The p-gon pattern for Circle Limit I

Layers of p-gons

We note that the p-gons of a {p, q} tessellation are arranged in
layers as follows:

◮ The first layer is just the central p-gon.

◮ The k + 1st layer consists of all p-gons sharing and edge or a
vertex with a p-gon in the k th layer (and no previous layers).

◮ Theoretically a repeating hyperbolic pattern has an infinite
number of layers, however if we only replicate a small number
of layers, this is usually enough to appear to fill the bounding
circle to our Euclidean eyes.

Exposure of a p-gon

We also define the exposure of a p-gon in terms of the number of
edges it has in common with the next layer (and thus the fewest
edges in common with the previous layer).

◮ A p-gon has maximum exposure if it has the most edges in
common with the next layer, and thus only shares a vertex
with the previous layer.

◮ A p-gon has minimum exposure if it has the least edges in
common with the next layer, and thus shares an edge with
the previous layer.

◮ We abbreviate these values as MAX EXP and MIN EXP
respectively.

The Replication Algorithm

The replication algorithm consists of two parts:

◮ A top-level “driver” routine replicate() that draws the first
layer, and calls a second routine,
recursiveRep(), to draw the rest of the layers.

◮ A routine recursiveRep() that recursively draws the rest of
the desired number of layers.

A tiling pattern is determined by how the p-gon pattern is
transformed across p-gon edges. These transformations are in the
array edgeTran[]

The Top-level Routine replicate()

Replicate (motif) {
drawPgon (motif, IDENT) ; // Draw central p-gon

for (i = 1 to p) { // Iterate over each vertex

qTran = edgeTran[i-1] ;

for (j = 1 to q-2) { // Iterate about a vertex

exposure = (j == 1) ? MIN EXP : MAX EXP ;

recursiveRep (motif, qTran, 2, exposure) ;

qTran = addToTran (qTran, -1) ;

}
}

}

The function addToTran() is described next.

The Function addToTran()

Transformations contain a matrix, the orientation, and an index,
pPosition, of the edge across which the last transformation was
made (edgeTran[i].pPosition is the edge matched with edge i in
the tiling). Here is addToTran():
addToTran (tran, shift) {
if (shift % p == 0) return tran ;

else return computeTran (tran, shift) ;

}
where computeTran() is:
computeTran (tran, shift) {
newEdge = (tran.pPosition +

tran.orientation * shift) % p ;

return tranMult(tran, edgeTran[newEdge]) ;

}
and where tranMult (t1, t2) multiplies the matrices and
orientations, sets the pPosition to t2.pPosition, and returns the
result.

The Routine recursiveRep()

recursiveRep (motif, initialTran, layer, exposure) {
DrawPgon (motif, initialTran) ; // Draw p-gon pattern

if (layer < maxLayer) { // If any more layers

pShift = (exposure == MIN EXP) ? 1 : 0 ;

verticesToDo = (exposure == MIN EXP) ? p-3 : p-2 ;

for (i = 1 to verticesToDo) {// Do each vertex

pTran = computeTran (initialTran, pShift) ;

qSkip = (i == 1) ? -1 : 0 ;

qTran = addToTran (pTran, qSkip) ;

pgonsToDo = (i == 1) ? q-3 : q-2 ;

for (j = 1 to pgonsToDo) {// Go around a vertex

newExposure = (j == 1) ? MIN EXP : MAX EXP ;

recursiveRep(motif, qTran, layer+1, newExposure);

qTran = addToTran (qTran, -1) ;

}
pShift = (pShift + 1) % p ; // Go to next vertex

}
}

}

Special Cases

The algorithm above works for p > 3 and q > 3.

If p = 3 or q = 3, the same algorithm works, but with different
values of pShift, verticesToDo, qSkip, etc.

Sample Patterns

Escher’s Euclidean Notebook Drawing 20, based on the {4, 4}
tessellation.

Escher’s Spherical Fish Pattern Based on {4, 3}

A Hyperbolic Fish Pattern Based on {4, 5}

Escher’s Euclidean Notebook Drawing 25, based on the {6, 3}
tessellation.

Escher’s Print Reptiles based on Notebook Drawing 25

A Hyperbolic Lizard Pattern Based on {8, 3}

Escher’s Euclidean Notebook Drawing 42, based on the {4, 4}
tessellation.

A Hyperbolic Shell Pattern Based on {4, 5}

Escher’s Euclidean Notebook Drawing 45, based on the {4, 4}
tessellation.

Escher’s Spherical “Heaven and Hell” Based on {4, 3}

A Hyperbolic “Heaven and Hell” Pattern Based on {4, 5}

Escher’s Euclidean Notebook Drawing 70, based on the {6, 3}
tessellation.

A Hyperbolic Butterfly Pattern Based on {8, 3}

A Hyperbolic Butterfly Pattern Based on {7, 3}

A Hyperbolic Butterfly Pattern Based on {3, 7}

A Hyperbolic Butterfly Pattern Based on {5, 4}

A Hyperbolic Butterfly Pattern Based on {5, 5}

Future Work

◮ Extend the algorithm to handle tilings by non-regular polygons.

◮ Extend the algorithm to the cases infinite regular polygons: {p,∞}
of infinite p-sided polygons, or {∞, q} of infinite-sided polygons
meeting q at a vertex.

◮ Create a program to transform between different fundamental
polygons.

◮ Automatically generate patterns with color symmetry.

Thank You

To CIRM and all the organizers of SubTile 2013

Contact Information:
Doug Dunham
Email: ddunham@d.umn.edu
Web: http://www.d.umn.edu/~ddunham

