SubTile 2013, Marseille

An Algorithm to Create Hyperbolic Escher Tilings
Douglas Dunham
University of Minnesota Duluth
Duluth, Minnesota USA
Email: ddunham@d.umn.edu
Web: http://www.d.umn.edu/~ddunham

Outline

- Motivation - M.C. Escher examples
- Hyperbolic geometry, Repeating patterns, and regular tessellations
- The replication algorithm
- Other hyperbolic patterns inspired by Escher patterns
- Future research

Hyperbolic Art Pioneer: M.C. Escher Four "Circle Limit" Patterns: Circle Limit I

Circle Limit II

Circle Limit III

Circle Limit IV

Creating Repeating Hyperbolic Patterns

A two-step process:

1. Design the fundamental tile or motif
2. Transform copies of the tile about the hyperbolic plane: replication

Poincaré Disk Model of Hyperbolic Geometry

Repeating Patterns

A repeating pattern is composed of congruent copies of the motif.

The Regular Tessellations $\{p, q\}$

- The regular tessellation $\{p, q\}$ is a tiling composed of regular p-sided polygons, or p-gons meeting q at each vertex.
- It is necessary that $(p-2)(q-2)>4$ for the tessellation to be hyperbolic.
- If $(p-2)(q-2)=4$ or $(p-2)(q-2)<4$ the tessellation is Euclidean or spherical respectively.

The Regular Tessellation $\{6,4\}$

A Table of the Regular Tessellations

The Replication Algorithm

To reduce the number of transformations and to simplify the replication process, we form the p-gon pattern from all the copies of the motif touching the center of the bounding circle.

- Thus in order to replicate the pattern, we apply transformations to the \mathbf{p}-gon pattern rather than to each individual motif.
- Some parts of the p-gon pattern may protrude from the enclosing p-gon, as long as there are corresponding indentations, so that the final pattern will fit together like a jigsaw puzzle.
- The p-gon pattern is often called the translation unit in repeating Euclidean patterns.

The p-gon pattern for Circle Limit I

Layers of p-gons

We note that the p-gons of a $\{p, q\}$ tessellation are arranged in layers as follows:

- The first layer is just the central p-gon.
- The $k+1^{\text {st }}$ layer consists of all p-gons sharing and edge or a vertex with a p-gon in the $k^{\text {th }}$ layer (and no previous layers).
- Theoretically a repeating hyperbolic pattern has an infinite number of layers, however if we only replicate a small number of layers, this is usually enough to appear to fill the bounding circle to our Euclidean eyes.

Exposure of a p-gon

We also define the exposure of a p-gon in terms of the number of edges it has in common with the next layer (and thus the fewest edges in common with the previous layer).

- A p-gon has maximum exposure if it has the most edges in common with the next layer, and thus only shares a vertex with the previous layer.
- A p-gon has minimum exposure if it has the least edges in common with the next layer, and thus shares an edge with the previous layer.
- We abbreviate these values as MAX_EXP and MIN_EXP respectively.

The Replication Algorithm

The replication algorithm consists of two parts:

- A top-level "driver" routine replicate() that draws the first layer, and calls a second routine, recursiveRep(), to draw the rest of the layers.
- A routine recursiveRep() that recursively draws the rest of the desired number of layers.

A tiling pattern is determined by how the p-gon pattern is transformed across p-gon edges. These transformations are in the array edgeTran []

The Top-level Routine replicate()

```
Replicate ( motif ) {
    drawPgon ( motif, IDENT ) ; // Draw central p-gon
    for ( i = 1 to p ) { // Iterate over each vertex
        qTran = edgeTran[i-1] ;
        for ( j = 1 to q-2 ) { // Iterate about a vertex
            exposure = (j == 1) ? MIN_EXP : MAX_EXP ;
            recursiveRep ( motif, qTran, 2, exposure ) ;
            qTran = addToTran ( qTran, -1 ) ;
        }
    }
}
```

The function addToTran() is described next.

The Function addToTran()

Transformations contain a matrix, the orientation, and an index, pPosition, of the edge across which the last transformation was made (edgeTran[i].pPosition is the edge matched with edge i in the tiling). Here is addToTran():
addToTran (tran, shift) \{
if (shift \% p == 0) return tran ;
else return computeTran (tran, shift) ;
\}
where computeTran() is:
computeTran (tran, shift) \{
newEdge $=$ (tran.pPosition +
tran.orientation * shift) \% p ;
return tranMult(tran, edgeTran[newEdge]) ;
\}
and where tranMult (t 1 , t 2) multiplies the matrices and orientations, sets the pPosition to t2.pPosition, and returns the result.

The Routine recursiveRep()

```
recursiveRep ( motif, initialTran, layer, exposure ) {
    DrawPgon ( motif, initialTran ) ; // Draw p-gon pattern
    if ( layer < maxLayer ) { // If any more layers
        pShift = ( exposure == MIN_EXP ) ? 1 : 0 ;
        verticesToDo = ( exposure == MIN_EXP ) ? p-3 : p-2 ;
        for ( i = 1 to verticesToDo ) {// Do each vertex
            pTran = computeTran ( initialTran, pShift ) ;
        qSkip = ( i == 1 ) ? -1 : 0 ;
        qTran = addToTran ( pTran, qSkip ) ;
        pgonsToDo = ( i == 1 ) ? q-3 : q-2 ;
        for ( j = 1 to pgonsToDo ) {// Go around a vertex
        newExposure = ( j == 1 ) ? MIN_EXP : MAX_EXP ;
        recursiveRep(motif, qTran, layer+1, newExposure);
        qTran = addToTran ( qTran, -1 ) ;
    }
    pShift = (pShift + 1) % p ; // Go to next vertex
    }
    }
}
```


Special Cases

The algorithm above works for $p>3$ and $q>3$.

If $p=3$ or $q=3$, the same algorithm works, but with different values of pShift, verticesToDo, qSkip, etc.

Sample Patterns

Escher's Euclidean Notebook Drawing 20, based on the $\{4,4\}$ tessellation.

Escher's Spherical Fish Pattern Based on $\{4,3\}$

A Hyperbolic Fish Pattern Based on $\{4,5\}$

Escher's Euclidean Notebook Drawing 25, based on the $\{6,3\}$ tessellation.

Escher's Print Reptiles based on Notebook Drawing 25

A Hyperbolic Lizard Pattern Based on $\{8,3\}$

Escher's Euclidean Notebook Drawing 42, based on the $\{4,4\}$ tessellation.

A Hyperbolic Shell Pattern Based on $\{4,5\}$

Escher's Euclidean Notebook Drawing 45, based on the $\{4,4\}$ tessellation.

Escher's Spherical "Heaven and Hell" Based on $\{4,3\}$

A Hyperbolic "Heaven and Hell" Pattern Based on $\{4,5\}$

Escher's Euclidean Notebook Drawing 70, based on the $\{6,3\}$ tessellation.

A Hyperbolic Butterfly Pattern Based on $\{8,3\}$

A Hyperbolic Butterfly Pattern Based on $\{7,3\}$

A Hyperbolic Butterfly Pattern Based on $\{3,7\}$

A Hyperbolic Butterfly Pattern Based on $\{5,4\}$

A Hyperbolic Butterfly Pattern Based on $\{5,5\}$

Future Work

- Extend the algorithm to handle tilings by non-regular polygons.
- Extend the algorithm to the cases infinite regular polygons: $\{p, \infty\}$ of infinite p-sided polygons, or $\{\infty, q\}$ of infinite-sided polygons meeting q at a vertex.
- Create a program to transform between different fundamental polygons.
- Automatically generate patterns with color symmetry.

Thank You

To CIRM and all the organizers of SubTile 2013

Contact Information:
Doug Dunham
Email: ddunham@d.umn.edu
Web: http://www.d.umn.edu/~ddunham

