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Hyperbolic Art Pioneer: M.C. Escher
Four “Circle Limit” Patterns: Circle Limit I



Circle Limit II



Circle Limit III



Circle Limit IV



Creating Repeating Hyperbolic Patterns

A two-step process:

1. Design the fundamental tile or motif

2. Transform copies of the tile about the hyperbolic plane:
replication



Poincaré Disk Model of Hyperbolic Geometry



Repeating Patterns
A repeating pattern is composed of congruent copies of the motif.



The Regular Tessellations {p, q}

◮ The regular tessellation {p, q} is a tiling composed of regular
p-sided polygons, or p-gons meeting q at each vertex.

◮ It is necessary that (p − 2)(q − 2) > 4 for the tessellation to be
hyperbolic.

◮ If (p − 2)(q − 2) = 4 or (p − 2)(q − 2) < 4 the tessellation is
Euclidean or spherical respectively.



The Regular Tessellation {6, 4}



A Table of the Regular Tessellations
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8 * * * * * * · · ·

7 * * * * * * · · ·

q 6 * * * * * · · ·

5 © * * * * * · · ·

4 © * * * * · · ·

3 © © © * * · · ·

3 4 5 6 7 8 · · ·

p

- Euclidean

tessellations
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* - hyperbolic
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The Replication Algorithm

To reduce the number of transformations and to simplify the
replication process, we form the p-gon pattern from all the copies
of the motif touching the center of the bounding circle.

◮ Thus in order to replicate the pattern, we apply
transformations to the p-gon pattern rather than to each
individual motif.

◮ Some parts of the p-gon pattern may protrude from the
enclosing p-gon, as long as there are corresponding
indentations, so that the final pattern will fit together like a
jigsaw puzzle.

◮ The p-gon pattern is often called the translation unit in
repeating Euclidean patterns.



The p-gon pattern for Circle Limit I



Layers of p-gons

We note that the p-gons of a {p, q} tessellation are arranged in
layers as follows:

◮ The first layer is just the central p-gon.

◮ The k + 1st layer consists of all p-gons sharing and edge or a
vertex with a p-gon in the k th layer (and no previous layers).

◮ Theoretically a repeating hyperbolic pattern has an infinite
number of layers, however if we only replicate a small number
of layers, this is usually enough to appear to fill the bounding
circle to our Euclidean eyes.



Exposure of a p-gon

We also define the exposure of a p-gon in terms of the number of
edges it has in common with the next layer (and thus the fewest
edges in common with the previous layer).

◮ A p-gon has maximum exposure if it has the most edges in
common with the next layer, and thus only shares a vertex
with the previous layer.

◮ A p-gon has minimum exposure if it has the least edges in
common with the next layer, and thus shares an edge with
the previous layer.

◮ We abbreviate these values as MAX EXP and MIN EXP
respectively.



The Replication Algorithm

The replication algorithm consists of two parts:

◮ A top-level “driver” routine replicate() that draws the first
layer, and calls a second routine,
recursiveRep(), to draw the rest of the layers.

◮ A routine recursiveRep() that recursively draws the rest of
the desired number of layers.

A tiling pattern is determined by how the p-gon pattern is
transformed across p-gon edges. These transformations are in the
array edgeTran[]



The Top-level Routine replicate()

Replicate ( motif ) {
drawPgon ( motif, IDENT ) ; // Draw central p-gon

for ( i = 1 to p ) { // Iterate over each vertex

qTran = edgeTran[i-1] ;

for ( j = 1 to q-2 ) { // Iterate about a vertex

exposure = (j == 1) ? MIN EXP : MAX EXP ;

recursiveRep ( motif, qTran, 2, exposure ) ;

qTran = addToTran ( qTran, -1 ) ;

}
}

}

The function addToTran() is described next.



The Function addToTran()

Transformations contain a matrix, the orientation, and an index,
pPosition, of the edge across which the last transformation was
made (edgeTran[i].pPosition is the edge matched with edge i in
the tiling). Here is addToTran():
addToTran ( tran, shift ) {
if ( shift % p == 0 ) return tran ;

else return computeTran ( tran, shift ) ;

}
where computeTran() is:
computeTran ( tran, shift ) {
newEdge = (tran.pPosition +

tran.orientation * shift) % p ;

return tranMult(tran, edgeTran[newEdge]) ;

}
and where tranMult ( t1, t2 ) multiplies the matrices and
orientations, sets the pPosition to t2.pPosition, and returns the
result.



The Routine recursiveRep()

recursiveRep ( motif, initialTran, layer, exposure ) {
DrawPgon ( motif, initialTran ) ; // Draw p-gon pattern

if ( layer < maxLayer ) { // If any more layers

pShift = ( exposure == MIN EXP ) ? 1 : 0 ;

verticesToDo = ( exposure == MIN EXP ) ? p-3 : p-2 ;

for ( i = 1 to verticesToDo ) {// Do each vertex

pTran = computeTran ( initialTran, pShift ) ;

qSkip = ( i == 1 ) ? -1 : 0 ;

qTran = addToTran ( pTran, qSkip ) ;

pgonsToDo = ( i == 1 ) ? q-3 : q-2 ;

for ( j = 1 to pgonsToDo ) {// Go around a vertex

newExposure = ( j == 1 ) ? MIN EXP : MAX EXP ;

recursiveRep(motif, qTran, layer+1, newExposure);

qTran = addToTran ( qTran, -1 ) ;

}
pShift = (pShift + 1) % p ; // Go to next vertex

}
}

}



Special Cases

The algorithm above works for p > 3 and q > 3.

If p = 3 or q = 3, the same algorithm works, but with different
values of pShift, verticesToDo, qSkip, etc.



Sample Patterns

Escher’s Euclidean Notebook Drawing 20, based on the {4, 4}
tessellation.



Escher’s Spherical Fish Pattern Based on {4, 3}



A Hyperbolic Fish Pattern Based on {4, 5}



Escher’s Euclidean Notebook Drawing 25, based on the {6, 3}
tessellation.



Escher’s Print Reptiles based on Notebook Drawing 25



A Hyperbolic Lizard Pattern Based on {8, 3}



Escher’s Euclidean Notebook Drawing 42, based on the {4, 4}
tessellation.



A Hyperbolic Shell Pattern Based on {4, 5}



Escher’s Euclidean Notebook Drawing 45, based on the {4, 4}
tessellation.



Escher’s Spherical “Heaven and Hell” Based on {4, 3}



A Hyperbolic “Heaven and Hell” Pattern Based on {4, 5}



Escher’s Euclidean Notebook Drawing 70, based on the {6, 3}
tessellation.



A Hyperbolic Butterfly Pattern Based on {8, 3}



A Hyperbolic Butterfly Pattern Based on {7, 3}



A Hyperbolic Butterfly Pattern Based on {3, 7}



A Hyperbolic Butterfly Pattern Based on {5, 4}



A Hyperbolic Butterfly Pattern Based on {5, 5}



Future Work

◮ Extend the algorithm to handle tilings by non-regular polygons.

◮ Extend the algorithm to the cases infinite regular polygons: {p,∞}
of infinite p-sided polygons, or {∞, q} of infinite-sided polygons
meeting q at a vertex.

◮ Create a program to transform between different fundamental
polygons.

◮ Automatically generate patterns with color symmetry.
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