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H.S.M. Coxeter's 1957 Figure
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Escher’'s Circle Limit |




A rendition of Circle Limit Il
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Escher’'s Circle Limit 111




Escher's Circle Limit IV




Hyperbolic Geometry and Regular Tessellations

» In 1901, David Hilbert proved that, unlike the sphere, there was no
isometric (distance-preserving) embedding of the hyperbolic plane
into ordinary Euclidean 3-space.

> Thus we must use models of hyperbolic geometry in which Euclidean
objects have hyperbolic meaning, and which must distort distance.

> One such model is the Poincaré disk model. The hyperbolic points
in this model are represented by interior point of a Euclidean circle
— the bounding circle. The hyperbolic lines are represented by
(internal) circular arcs that are perpendicular to the bounding circle
(with diameters as special cases).

> This model is appealing to artests since (1) angles have their
Euclidean measure (i.e. it is conformal), so that motifs of a
repeating pattern retain their approximate shape as they get smaller
toward the edge of the bounding circle, and (2) it can display an
entire pattern in a finite area.



Poincaré Disk Model of Hyperbolic Geometry




Repeating Patterns

A repeating pattern is composed of congruent copies of the motif.




Regular Tessellations

The regular tessellation, {p, q}, is an important kind of repeating
pattern composed of regular p-sided polygons meeting g at a vertex.

If (p—2)(g—2) <4, {p,q} is a spherical tessellation (assuming
p > 2 and g > 2 to avoid special cases).

If (p—2)(g—2)=4, {p,q} is a Euclidean tessellation.

If (p—2)(g—2) >4, {p,q} is a hyperbolic tessellation. The next
slide shows the {6,4} tessellation.

Escher based his 4 “Circle Limit" patterns, and many of his
spherical and Euclidean patterns on regular tessellations.



The Regular Tessellation {6,4}
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A Family of Circle Limit Il Patterns

We use the symbolism (p,q,r) to denote a pattern of fish in which p
meet at right fin tips, q meet at left fin tips, and r fish meet at their
noses. Of course p and q must be at least three, and r must be odd so
that the fish swim head-to-tail (as they do in Circle Limit I1I).

Escher's Circle Limit Il pattern itself would be labeled (4,3,3) in this
notation.



A (5,3,3) Pattern




A (4,4,3) Pattern




A (5,5,3) Pattern
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A (3,3,5) Pattern




A (3,4,3) Pattern




A (3,5,3) Pattern




A Butterfly Pattern Based on the {5,4} Tessellation




The Family of Butterfly Patterns

Theoretically, we can create a butterfly pattern based on {p, g} like
the one above for any values of p and g provided p > 3 and g > 3.

For these patterns, p butterflies meet at their left front wing tips
and g butterflies meet at their right rear wings.

Escher created only one member of this family of patterns, his
Regular Division Drawing Number 70, based on the Euclidean
hexagon tessellation {6,3}. At least 3 colors are needed to satisfy
the map-coloring principle at the meeting points of right rear wings.

Following Escher, we add the restriction to our patterns that all
circles on the butterfly wings around a p-fold meeting point of left
wingtips be a different color from the butterflies meeting there.

The hyperbolic butterfly pattern based on the {5,4} tessellation
requires at least five colors for color symmetry since five is prime,
and six colors if the circles on the wings are to be a different color.



Escher's 3-colored butterfly pattern
Regular Division Drawing Number 70
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A 3-colored (8, 3) butterfly pattern




A 6-colored (5,5) butterfly pattern




butterfly pattern
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An 8-colored




An 8-colored (7,4) butterfly pattern




butterfly pattern
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A 3-colored




A (10, 4) butterfly pattern showing distortion for large p
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Triply Periodic Polyhedra

A triply periodic polyhedron is a (non-closed) polyhedron that
repeats in three different directions in Euclidean 3-space.

We will consider the special case of uniform triply periodic
polyhedra which have the same vertex figure at each vertex —

i.e. there is a symmetry of the polyhedron that takes any vertex to
any other vertex..

We will mostly discuss a speciallization of uniform triply periodic
polyhedra: regular triply periodic polyhedra which are
“flag-transitive” — there is a symmetry of the polyhedron that
takes any vertex, edge containing that vertex, and face containing
that edge to any other such (vertex, edge, face) combination.

In 1926 John Petrie and H.S.M. Coxeter proved that there are
exactly three regular triply periodic polyhedra, which Coxeter
denoted {4,6|4}, {6,4|4}, and {6, 6|3}, where {p, g|r} denotes a
polyhedron made up of p-sided regular polygons meeting g at a
vertex, and with regular r-sided holes.



Angels and Devils on the {4,6/4} polyhedron




The corresponding Angels and Devils pattern in the hyperbolic
plane




Relation between periodic polyhedra and regular tessellations
— a 2-Step Process

> (1) Some triply periodic polyhedra approximate TPMS's.

As a bonus, some triply periodic polyhedra contain embedded
Euclidean lines which are also lines embedded in the corresponding
TPMS.

> (2) As a minimal surface, a TPMS has negative curvature (except
for isolated points of zero curvature), and so its universal covering
surface also has negative curvature and thus has the same
large-scale geometry as the hyperbolic plane.

So the polygons of the triply periodic polyhedron can be transferred
to the polygons of a corresponding regular tessellation of the
hyperbolic plane.

» We show this relationship in the next slides.



A pattern of fish on the {4,6/4} polyhedron
— showing colored embedded lines




Schwarz’s P-surface — approximated by the previous triply
periodic polyhedron, and showing corresponding embedded lines




A close-up of Schwarz’s P-surface showing corresponding
embedded lines and “skew rhombi”




The pattern of fish “unfolded” onto a repeating pattern of the
hyperbolic plane — showing the embedded lines as hyperbolic
lines, which bound the “skew rhombi”.
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A close-up of a vertex of the {4,6|4} polyhedron




Patterns on the {6, 4|4} Polyhedron

A pattern of angels and devils on the {6,4|4} polyhedron




A Pattern of Fish on the {6,4]4} Polyhedron
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A top view of the fish on the {6,4|4} polyhedron — showing fish
along embedded lines




The corresponding hyperbolic pattern of fish — a version of
Escher’s Circle Limit | pattern with 6-color symmetry




A Pattern of Fish on the {6, 6|3} Polyhedron




A top view of the fish on the {6,6|3} polyhedron — showing a
vertex




The corresponding hyperbolic pattern of fish — based on the
{6,6} tessellation




Patterns of Fish on a {3, 8} Polyhedron

Using a uniform triply periodic {3,8} polyhedron, we show a pattern of
fish inspired by Escher’s hyperbolic print Circle Limit Ill, which is based
on the regular {3, 8} tessellation. This polyhedron is related to Schwarz's
D-surface, a TRMS with the topology of a thickened diamond lattice,
which has embedded lines. The red, green, and yellow fish swim along
those lines (the blue fish swim in loops around the “waists”). We show:

> A piece of the triply periodic polyhedron.

» A corresponding piece of the patterned polyhedron.

> A piece of Schwarz's D-surface showing embedded lines.

» Escher’s Circle Limit Ill with the equilateral triangle tessellation
superimposed.

> A large piece of the patterned polyhedron.

> A top view of the large piece.



A piece of the triply periodic polyhedron




A corresponding piece of the patterned polyhedron




A piece of Schwarz’s D-surface showing embedded lines




Escher’s Circle Limit Ill with the equilateral triangle tessellation
superimposed
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A large piece of the patterned polyhedron




A top view of the large piece




Future Work

Put other patterns on the regular triply periodic polyhedra,
exploiting their embedded lines.

Place patterns on non-regular, uniform triply periodic polyhedra.

Put patterns on non-uniform triply periodic polyhedra — especially
those that more closely approximate triply periodic minimal surfaces.

Draw patterns on TPMS's — the gyroid, for example.
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