Systems

- Broadly speaking, a system is anything that responds when stimulated or excited
- The systems most commonly analyzed by engineers are artificial systems designed by humans
- Engineering system analysis is the application of mathematical methods to the design and analysis of systems

Systems

- Systems have inputs and outputs
- Systems accept excitation signals at their inputs and produce response signals at their outputs
- Systems are often usefully represented by block diagrams

A single-input, single-output system block diagram

Some Examples of Systems

A Multiple-Input, Multiple-Output System Block Diagram

Continuous and Discrete Time Systems

Continuous Time Systems

Example: an RC circuit

Discrete Time Systems

Example: a delayed adder

An Electrical Circuit Viewed as a System

1. An RC lowpass filter is a simple electrical system
2. It is excited by a voltage, $\mathrm{v}_{\text {in }}(t)$, and responds with a voltage, $\mathrm{v}_{\text {out }}(\mathrm{t})$
3. It can be viewed or modeled as a single-input, singleoutput system

Response of an RC Lowpass Filter to a Step Excitation

If an RC lowpass filter is excited by a step of voltage,

$$
\mathrm{v}_{i n}(t)=A \mathrm{u}(t)
$$

its response is

$$
\mathrm{v}_{\text {out }}(t)=A\left(1-e^{-\frac{t}{R C}}\right) \mathrm{u}(t)
$$

If the excitation is doubled, the response doubles.

A DT System

If the excitation, $x[n]$, is the unit sequence, the response is

If the excitation is doubled, the response doubles.

Characteristics of a System

Homogeneity

Discrete Time Homogeneous

Additivity

Linearity

Time-Invariance

$x(t) \longrightarrow t_{0} \xrightarrow{\text { Delay }} \xrightarrow{x\left(t-t_{0}\right)} \longrightarrow y\left(t-t_{0}\right)$

Discrete Time Time-Invariant

$$
x[n] \longrightarrow \xrightarrow{\text { Delay }} \xrightarrow{\text { D }} \xrightarrow{x\left[n-n_{0}\right]} \longrightarrow y\left[n-n_{0}\right]
$$

Stability

Stable Input

Stable Input means:

$$
|x(t)|<\infty \quad-\infty<t<\infty
$$

Stable Output means:
also called BIBO Stable

$$
|y(t)|<\infty \quad-\infty<t<\infty
$$

Causality

Output follows input and can not precede input.

Let's look at Examples of LTI Systems

Discrete Time

$$
y[n]-\frac{1}{2} y[n-1]=x[n]
$$

Idea of Unit Impulse Response

Continuous Time System
$x(t)=\delta(t) \longrightarrow H \longrightarrow y(t)=h(t)$

Discrete Time System

$$
x[n]=\delta[n] \longrightarrow H \longrightarrow y[n]=h[n]
$$

Higher Order Discrete System

$$
\begin{gathered}
a_{n} y[n]+a_{n-1} y[n-1]+\ldots .+a_{n-D} y[n-D]=x[n] \\
x[n]=\delta[n] \\
\Rightarrow y[n]=h[n]
\end{gathered}
$$

Impulse Response to System Response

$$
\begin{gathered}
a_{n} y[n]+a_{n-1} y[n-1]+\ldots . .+a_{n-D} y[n-D]=x[n] \\
x[n]=\delta[n] \quad \Rightarrow y[n]=h[n]
\end{gathered}
$$

Any Input $x[n]$ can be written as

$$
\begin{aligned}
x[n]=\cdots+ & x[-2] \delta[n+2]+x[-1] \delta[n+1]+ \\
& x[0] \delta[n]+x[1] \delta[n-1]+x[2] \delta[n-2]+\cdots
\end{aligned}
$$

This means system response, $y[n]$ can be given by

$$
\begin{aligned}
& y[n]=\cdots+x[-2] h[n+2]+x[-1] h[n+1]+ \\
& \quad x[0] h[n]+x[1] h[n-1]+x[2] h[n-2]+\cdots
\end{aligned}
$$

Simple System Response Example

More Complicated System Response Example

Convolution Sum

$$
\left.\begin{array}{rl}
\begin{array}{rl}
y[n]= & \cdots
\end{array} & +x[-2] h[n+2]+x[-1] h[n+1] \\
& +x[0] h[n]+x[1] h[n-1]+x[2] h[n+2]+\cdots
\end{array}\right\} \begin{aligned}
& y[n]= \\
& \sum_{m=-2}^{m=2} x[m] h[n-m]
\end{aligned}
$$

$y[n]=\sum_{m=-\infty}^{\infty} x[m] h[n-m]$
 Convolution Sum

$y[n]=x[n] * h[n]$
Superposition of delayed and weighted impulse responses

A Convolution Sum Example

A Convolution Sum Example

A Convolution Sum Example

A Convolution Sum Example

Convolution Integral in Continuous Time

$$
\begin{gathered}
x(t)=\delta(t) \longrightarrow H \longrightarrow y(t)=h(t) \\
y(t)=\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
y(t)=x(t) * h(t)
\end{gathered}
$$

Superposition of delayed and weighted impulse responses

A Graphical Illustration of the Convolution Integral

The convolution integral is defined by

$$
\mathrm{x}(t) * \mathrm{~h}(t)=\int_{-\infty}^{\infty} \mathrm{x}(\tau) \mathrm{h}(t-\tau) d \tau
$$

For illustration purposes let the excitation, $\mathrm{x}(t)$, and the impulse response, $\mathrm{h}(t)$, be the two functions below.

Department of Electrical and Computer Engineering

A Graphical Illustration of the Convolution Integral

In the convolution integral there is a factor, $\mathrm{h}(t-\tau)$
We can begin to visualize this quantity in the graphs below.

A Graphical Illustration of the Convolution Integral

The functional transformation in going from $h(\tau)$ to $h(t-\tau)$ is

$$
\mathrm{h}(\tau) \xrightarrow{\tau \rightarrow-\tau} \mathrm{h}(-\tau) \xrightarrow{\tau \rightarrow \tau-t} \mathrm{~h}(-(\tau-t))=\mathrm{h}(t-\tau)
$$

A Graphical Illustration of the Convolution Integral

The convolution value is the area under the product of $\mathrm{x}(t)$ and $\mathrm{h}(t-\tau)$. This area depends on what t is. First, as an example, let $t=5$.

For this choice of t the area under the product is zero. If

$$
\mathrm{y}(t)=\mathrm{x}(t) * \mathrm{~h}(t)
$$

then $y(5)=0$.

A Graphical Illustration of the Convolution Integral

Now let $t=0$.

Therefore $\mathrm{y}(0)=2$, the area under the product.

A Graphical Illustration of the Convolution Integral

The process of convolving to find $\mathrm{y}(t)$ is illustrated below.

Properties of Convolution

Continuous Time

$$
\begin{aligned}
h(t) & =\int_{-\infty}^{\infty} \delta(\tau) h(t-\tau) d \tau \\
& =\delta(t) * h(t)
\end{aligned}
$$

Discrete Time

$$
\begin{aligned}
h[n] & =\sum_{m=-\infty}^{\infty} \delta[m] h[n-m] \\
& =\delta[n]^{*} h[n]
\end{aligned}
$$

Properties of Convolution ... cont.

Continuous Time

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d \tau \\
& =x(t)^{*} h(t) \\
& =h(t)^{*} x(t) \\
& =\int_{-\infty}^{\infty} h(\tau) x(t-\tau) d \tau
\end{aligned}
$$

Discrete Time

$$
\begin{aligned}
y[n] & =\sum_{m=-\infty}^{\infty} x[m] h[n-m] \\
& =x[n] * h[n] \\
& =h[n]^{*} x[n] \\
& =\sum_{m=-\infty}^{\infty} h[m] x[n-m]
\end{aligned}
$$

Causality and Stability from Impulse Response

Continuous Time

Causality means for $\boldsymbol{t} \mathbf{<} \mathbf{0}$

$$
h(t)=0
$$

Stability means

$$
\int_{-\infty}^{\infty} h(t) d t<\infty
$$

Example:

$$
h(t)=e^{-t / R C} u(t)
$$

Discrete Time

Causality means for \boldsymbol{n} < $\mathbf{0}$

$$
h[n]=0
$$

Stability means

$$
\sum_{n=-\infty}^{\infty} h[n]<\infty
$$

Example:

$$
h[n]=\left(\frac{1}{2}\right)^{n} u[n]
$$

Cascaded and Parallel Systems

$$
\begin{aligned}
& x(t) \longrightarrow h_{1}(t) \longrightarrow y(t)=x(t)^{*} h_{1}(t) \\
& x(t) \longrightarrow h_{2}(t) \longrightarrow y(t)=x(t) * h_{2}(t)
\end{aligned}
$$

Cascaded Systems

$$
x(t) \longrightarrow h_{1}(t) \longrightarrow h_{2}(t) \longrightarrow y(t)=x(t) * h_{1}(t) * h_{2}(t)
$$

Parallel Systems

Responses to Standard Signals

Figure 3.70
Relations between integrals and derivatives of excitations and responses for an LTI system.

Finding Impulse Response

Continuous Time

$$
R C \frac{d y(t)}{d t}+y(t)=x(t)
$$

$$
\Rightarrow R C \frac{d h(t)}{d t}+h(t)=\delta(t)
$$

$$
\Rightarrow h(t)=e^{-t / R C} u(t)
$$

Discrete Time

$$
\begin{aligned}
& y[n]-\frac{1}{2} y[n-1]=x[n] \\
\Rightarrow & h[n]-\frac{1}{2} h[n-1]=\delta[n] \\
& \Rightarrow h[n]=\left(\frac{1}{2}\right)^{n} u[n]
\end{aligned}
$$

Finding the Impulse Response by Recursive Method

$$
y[n]-\frac{1}{2} y[n-1]=x[n]
$$

$$
\Rightarrow y[n]=x[n]+\frac{1}{2} y[n-1]
$$

n	Unit Impulse	$\mathrm{y}(\mathrm{n})$	$\mathrm{h}(\mathrm{n})$
-2	0	0	0
-1	0	0	0
0	1	1	1
1	0	$1 / 2$	$1 / 2$
2	0	$1 / 4$	$1 / 4$
3	0	$1 / 8$	$1 / 8$
4	0	$1 / 16$	$1 / 16$
5	0	$1 / 32$	$1 / 32$
6	0	$1 / 64$	$1 / 64$

Solving First Order Difference Equation

$$
y[n]-\frac{1}{2} y[n-1]=x[n]
$$

Homogeneous Solution

$$
\begin{aligned}
& y[n]-\frac{1}{2} y[n-1]=0 \\
& y[n]=\frac{1}{2} y[n-1] \\
& \frac{y[n]}{y[n-1]}=\frac{1}{2} \\
& \Rightarrow y[n]=K\left(\frac{1}{2}\right)^{n}
\end{aligned}
$$

Particular Solution
$y[n]-\frac{1}{2} y[n-1]=\delta[n]$
At $\boldsymbol{n}=0$
$y[0]-\frac{1}{2} y[-1]=\delta[0]$

$$
y[0]-0=1
$$

$$
K\left(\frac{1}{2}\right)^{0}=1
$$

$$
\Rightarrow K=1
$$

$\Rightarrow y[n]=\left(\frac{1}{2}\right)^{n} u[n]$

Solving First Order Differential Equation

$$
R C \frac{d y(t)}{d t}+y(t)=x(t)
$$

Homogeneous Solution

$$
\begin{aligned}
& R C \frac{d y(t)}{d t}+y(t)=0 \\
& \frac{d y(t)}{d t}=-\frac{1}{R C} y(t) \\
\Rightarrow & y(t)=K e^{-\frac{1}{R C} t}
\end{aligned}
$$

Particular Solution
$R C \frac{d y(t)}{d t}+y(t)=\delta(t)$
Integrating from $t=\boldsymbol{0}^{-}$to $\boldsymbol{t}=\boldsymbol{0}^{+}$

$$
\begin{aligned}
& R C \int_{0^{-}}^{0^{+}} \frac{d y(t)}{d t} d t+\int_{0^{-}}^{0^{+}} y(t) d t=\int_{0^{-}}^{0^{+}} \delta(t) d t \\
& R C\left[y\left(0^{+}\right)-y\left(0^{-}\right)\right]+\int_{0^{-}}^{0^{+}} y(t) d t=1 \\
& R C\left[y\left(0^{+}\right)-y\left(0^{-}\right)\right]+0=1
\end{aligned}
$$

Solving First Order Differential Equation

$$
R C \frac{d y(t)}{d t}+y(t)=x(t)
$$

Homogeneous Solution

$$
\begin{aligned}
& R C \frac{d y(t)}{d t}+y(t)=0 \\
& \frac{d y(t)}{d t}=-\frac{1}{R C} y(t) \\
\Rightarrow & y(t)=K e^{-\frac{1}{R C} t}
\end{aligned}
$$

Particular Solution ... cont

$$
R C\left[y\left(0^{+}\right)-y\left(0^{-}\right)\right]+0=1
$$

$$
R C\left[y\left(0^{+}\right)-y\left(0^{-}\right)\right]=1
$$

$$
R C\left[y\left(0^{+}\right)-0\right]=1
$$

$$
R C y\left(0^{+}\right)=1
$$

$$
R C K e^{0^{+}}=1 \quad \Rightarrow K=\frac{1}{R C}
$$

