Systems

- Broadly speaking, a system is anything that responds when stimulated or excited
- The systems most commonly analyzed by engineers are artificial systems designed by humans
- Engineering system analysis is the application of mathematical methods to the design and analysis of systems

Systems

- Systems have inputs and outputs
- Systems accept excitation signals at their inputs and produce response signals at their outputs
- Systems are often usefully represented by block diagrams

A single-input, single-output system block diagram

$$\mathbf{x}(t) \longrightarrow \mathcal{H} \longrightarrow \mathbf{y}(t)$$

Some Examples of Systems

A Multiple-Input, Multiple-Output System Block Diagram

Continuous and Discrete Time Systems

Continuous Time Systems

$$x(t) \longrightarrow H \longrightarrow y(t)$$

Example: an RC circuit

Discrete Time Systems

$$x[n] \longrightarrow H \longrightarrow y[n]$$

Example: a delayed adder

An Electrical Circuit Viewed as a System

- 1. An RC lowpass filter is a simple electrical system
- 2. It is excited by a voltage, $v_{in}(t)$, and responds with a voltage, $v_{out}(t)$
- 3. It can be viewed or modeled as a single-input, singleoutput system

Response of an RC Lowpass Filter to a Step Excitation

If an RC lowpass filter is excited by a step of voltage,

$$\mathbf{v}_{in}(t) = A \, \mathbf{u}(t)$$

its response is

If the excitation is doubled, the response doubles.

A DT System

If the excitation, x[n], is the unit sequence, the response is

If the excitation is doubled, the response doubles.

ECF

Characteristics of a System

Linear Time-Invariant Systems (LTI Systems) - 2. Additivity Systems (LTI Systems)

Linearity

- 3. Time Invariance
- 4. Stabillity
- 5. Causality

Homogeneity

Additivity

Linearity

Time-Invariance

Stability

Stable Input means:

 $|x(t)| < \infty \qquad -\infty < t < \infty$

also called BIBO Stable

Stable Output means:

$$|y(t)| < \infty \quad -\infty < t < \infty$$

Causality

Output follows input and can not precede input.

ECF

Let's look at Examples of LTI Systems

Idea of Unit Impulse Response

Continuous Time System

$$x(t) = \delta(t) \longrightarrow H \longrightarrow y(t) = h(t)$$

$$x[n] \longrightarrow H \longrightarrow y[n]$$

Discrete Time System

$$x[n] = \delta[n] \longrightarrow H \longrightarrow y[n] = h[n]$$

Higher Order Discrete System

$$a_n y[n] + a_{n-1} y[n-1] + \dots + a_{n-D} y[n-D] = x[n]$$

$$x[n] = \delta[n]$$

$$\Rightarrow y[n] = h[n]$$

Impulse Response to System Response

$$a_n y[n] + a_{n-1} y[n-1] + \dots + a_{n-D} y[n-D] = x[n]$$
$$x[n] = \delta[n] \qquad \Rightarrow y[n] = h[n]$$

Any Input x[n] can be written as

$$x[n] = \dots + x[-2]\delta[n+2] + x[-1]\delta[n+1] +$$

 $x[0]\delta[n] + x[1]\delta[n-1] + x[2]\delta[n-2] + \dots$

This means system response, y[n] can be given by $y[n] = \dots + x[-2]h[n+2] + x[-1]h[n+1] +$

 $x[0]h[n] + x[1]h[n-1] + x[2]h[n-2] + \cdots$

Department of Electrical and Computer Engineering

ECE

More Complicated System Response Example

Convolution Sum

 $y[n] = \dots + x[-2]h[n+2] + x[-1]h[n+1]$

 $+ x[0]h[n] + x[1]h[n-1] + x[2]h[n+2] + \cdots$

$$y[n] = \sum_{m=-2}^{m=2} x[m]h[n-m]$$

$$y[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$

Convolution Sum

y[n] = x[n] * h[n]

Superposition of delayed and weighted impulse responses

A Convolution Sum Example

A Convolution Sum Example

A Convolution Sum Example

Convolution Integral in Continuous Time

$$x(t) = \delta(t) \longrightarrow H \longrightarrow y(t) = h(t)$$

$$y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$$

$$y(t) = x(t) * h(t)$$

Superposition of delayed and weighted impulse responses

The convolution integral is defined by

$$\mathbf{x}(t) * \mathbf{h}(t) = \int_{-\infty}^{\infty} \mathbf{x}(\tau) \mathbf{h}(t-\tau) d\tau$$

For illustration purposes let the excitation, x(t), and the impulse response, h(t), be the two functions below.

In the convolution integral there is a factor, $h(t - \tau)$

We can begin to visualize this quantity in the graphs below.

The functional transformation in going from $h(\tau)$ to $h(t - \tau)$ is $h(\tau) \xrightarrow{\tau \to -\tau} h(-\tau) \xrightarrow{\tau \to \tau - t} h(-(\tau - t)) = h(t - \tau)$ $h(t-\tau)$

The convolution value is the area under the product of x(t) and $h(t - \tau)$. This area depends on what *t* is. First, as an example, let t = 5.

For this choice of *t* the area under the product is zero. If

$$\mathbf{y}(t) = \mathbf{x}(t) * \mathbf{h}(t)$$

then y(5) = 0.

Now let t = 0.

Therefore y(0) = 2, the area under the product.

The process of convolving to find y(t) is illustrated below.

Properties of Convolution

Continuous Time

$$h(t) = \int_{-\infty}^{\infty} \delta(\tau) h(t-\tau) d\tau$$

$$= \delta(t) * h(t)$$

Discrete Time

$$h[n] = \sum_{m=-\infty}^{\infty} \delta[m]h[n-m]$$

 $=\delta[n]*h[n]$

Properties of Convolution ... cont.

Continuous Time

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$
$$= x(t) * h(t)$$
$$= h(t) * x(t)$$
$$= \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

Discrete Time

$$y[n] = \sum_{m=-\infty}^{\infty} x[m]h[n-m]$$
$$= x[n]*h[n]$$
$$= h[n]*x[n]$$
$$= \sum_{m=-\infty}^{\infty} h[m]x[n-m]$$

Causality and Stability from Impulse Response

Continuous Time

Causality means for t < 0

h(t) = 0

Stability means

$$\int_{-\infty}^{\infty} h(t) dt < \infty$$

Example:

$$h(t) = e^{-t/RC} u(t)$$

Discrete Time

Causality means for n < 0

h[n] = 0

Stability means

$$\sum_{n=-\infty}^{\infty} h[n] < \infty$$

Example:

$$h[n] = \left(\frac{1}{2}\right)^n u[n]$$

Cascaded and Parallel Systems

$$x(t) \longrightarrow h_1(t) \longrightarrow y(t) = x(t) * h_1(t)$$
$$x(t) \longrightarrow h_2(t) \longrightarrow y(t) = x(t) * h_2(t)$$

Cascaded Systems

$$x(t) \longrightarrow h_1(t) \longrightarrow h_2(t) \longrightarrow y(t) = x(t) * h_1(t) * h_2(t)$$

Parallel Systems $x(t) \rightarrow h_1(t) \rightarrow y(t) = x(t) * [h_1(t) + h_2(t)]$

Responses to Standard Signals

Depar

f

2.2

Finding Impulse Response

Discrete Time

Finding the Impulse Response by Recursive Method

$$y[n] - \frac{1}{2}y[n-1] = x[n]$$

$$\Rightarrow y[n] = x[n] + \frac{1}{2}y[n-1]$$

n	Unit Impulse	y(n)	h(n)
-2	0	0	0
-1	0	0	0
0	1	1	1
1	0	1/2	1/2
2	0	1/4	1/4
3	0	1/8	1/8
4	0	1/16	1/16
5	0	1/32	1/32
6	0	1/64	1/64

Solving First Order Difference Equation

Homogeneous Solution

$$y[n] - \frac{1}{2}y[n-1] = 0$$

$$y[n] = \frac{1}{2} y[n-1]$$

$$\frac{y[n]}{y[n-1]} = \frac{1}{2}$$
$$\Rightarrow y[n] = K \left(\frac{1}{2}\right)^n$$

 $y[n] - \frac{1}{2}y[n-1] = x[n]$

Particular Solution $y[n] - \frac{1}{2}y[n-1] = \delta[n]$ At n=0 $y[0] - \frac{1}{2}y[-1] = \delta[0]$ y[0] - 0 = 1 $K\!\left(\frac{1}{2}\right)^0 = 1$ $\Rightarrow K = 1$ $\Rightarrow y[n] = \left(\frac{1}{2}\right)^n u[n]$

Solving First Order Differential Equation

Homogeneous Solution

$$RC\frac{dy(t)}{dt} + y(t) = 0$$

$$\frac{dy(t)}{dt} = -\frac{1}{RC} y(t)$$

$$\Rightarrow y(t) = K e^{-\frac{1}{RC}t}$$

$$RC\frac{dy(t)}{dt} + y(t) = x(t)$$

Particular Solution

$$RC\frac{dy(t)}{dt} + y(t) = \delta(t)$$

Integrating from $t = 0^-$ to $t = 0^+$

$$RC\int_{0^{-}}^{0^{+}} \frac{dy(t)}{dt} dt + \int_{0^{-}}^{0^{+}} y(t) dt = \int_{0^{-}}^{0^{+}} \delta(t) dt$$
$$RC[y(0^{+}) - y(0^{-})] + \int_{0^{-}}^{0^{+}} y(t) dt = 1$$
$$RC[y(0^{+}) - y(0^{-})] + 0 = 1$$

ECE UMD

Solving First Order Differential Equation

Homogeneous Solution

$$RC\frac{dy(t)}{dt} + y(t) = 0$$

$$\frac{dy(t)}{dt} = -\frac{1}{RC} y(t)$$

$$\Rightarrow y(t) = Ke^{-\frac{1}{RC}t}$$

$$RC\frac{dy(t)}{dt} + y(t) = x(t)$$

Particular Solution ... cont $RC[y(0^+) - y(0^-)] + 0 = 1$ $RC[y(0^+) - y(0^-)] = 1$ $RC[y(0^+)-0]=1$ $RCy(0^+) = 1$ $RCKe^{0^+} = 1 \implies K = \frac{1}{RC}$ $\Rightarrow y(t) = \frac{1}{RC} e^{-\frac{1}{RC}t} u(t)$

