From Fourier Series to Fourier Transform

xt)= > X[Kh!

k=—00

1 to+TE _
X[k]=— j x(t)e ket
T

OR
Te

1 h — JKoogt
xmz?jmm dt

F_Te
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— x[k]:Ti j x(t)e " 'dt, when T, — o0
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— X[k]=_|_i j x(t)e 'dt, when T —

F

Let’s Consider a function o

X (@) = j x(t)e 1 dt

We can express X[k] in terms of X(w)

X[k]:TiX(ka)

F
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Fourier Transform of a Singal x(t) X (@) = F[X(t)]

X (@) = Tx(t)e‘j”tdt

—Q0

Now Let’s talk about the Inverse Fourier Transform

X(t) = F X ()]
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TliToo O > Aw X(t) = Z X (kAw) o Jkdat
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X(t) = Z X (KA®@) Ao

72- k=—00

X(t) = Z X (kAw)e ™™ Aw

27T =

. 1 0 jot
x(t)—ELX(w)e‘ dw

X(t) =F _1[X (C())] Inverse Fourier Transform
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Fourier Transform of a Signal x(t) X (@) = F[X(t)]

X (@) = Tx(t)e‘j”‘dt

Inverse Fourier Transform X('[) =F _l[X (a))]
X(t) = 1 ]2 X (w)e' dw
21 *
X(t) < X(w)
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Fourier Transform of a Signal x(t)

X(w) = F[x(t)] X(f)=F[x(t)]
. OR .
X (@) = j x(t)e 1 dt X (f)= j x(t)e 12" dt

Inverse Fourier Transform

X(t) = F[X ()] X(t) = F[X(f)]
OR

X(t) =i ]OX(a))ej”tda) X(t) = TX(f)ejz”ﬂdf
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Inverse Fourier Transform X(t) = F‘l[X (a))]
X(t) = 1 T X (w)e!”dw
21 =

dx(t) 1 % d
= X(w)—e'd
dt j (@) g8 9

dx(t) 1 7. ot
— ﬂ[oij(w)e dw

dx(t)
dt
dx(t)
dt

=F [joX ()]

< JoX (o)
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Fourier Transform of Impulse Function

)
Definition: ot)=0 t=0

0=t

Fourier Transform of a Singal x(t)

X (o) = Tx(t)e‘j”tdt

—Q0

— X (@) = j S(t)e i dt =e® =1

4

A

[ o(1)

v
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Let’s revisit LTI system

R
+ O— v\ o +

X(t) ) =—  y(b)

- O o —

c dy@®)
dt

+y(t) = x(t)

RCjoY (o) +Y (0) = X (w)

Y (0)[RCjo+1] = X (w)

Y(w) 1
X(w) RCjw+1
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+ O—V\w o +

X(t) o) =— Yy

G o —

Y(w) 1
X (w) - RCjo+1

Y(w) 1
X(w) 1+ joRC

When the input, x(t) is unit impulse function, the output is h(t)

H(w) 1
1 1+ JoRC

= H(w) = _l
1+ JawRC
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Some Examples of Fourier Transform

1. Animpulse function

2. A constant function (via inverse transform)

3. Complex exponential function (via inverse transform)
4. Sinosoidal Function

5. Gate Function
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Fourier Transform of a Constant Function

Fourier Transform of a Singal x(t)

X(t)

X (@) = Tx(t)e‘j“’tdt 1

o0

— jot

e
—jw

=040 =

- Te‘j”‘dt _

Let’s try indirectly — let’s find the Inverse Fourier Transform of o(w)

x(t) = F X (w)] = % [ X (@)e'*da 4

v

2700 (W)
= F1[5(a))]=% jé(w)ej“’tda)=%e° =% |
S F[]=6(0) = F[]=275(w) '
27T
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Fourier Transform of a Complex Exponential

Let’s find the Inverse Fourier Transform of o(w—@p)
-1 1 I jot
X(t) = F'[X (@)] == [ X(@)e*do
2

= F[5(0- o)== [5(0—0,)e " dw= e/
21 = 21

Jaxt 5 _
=50~ (@)

= F[

— F[ej“’Ot]:27z5(a)—a)o) >
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Fourier Transform of a Sinusoidal Signal

jaont — jayt

e +€

2

X(t) = cos(aw,t) =

eJ'a)ot _|_e—ja)ot
= F[cos(m,t)] = F[ > =m0 (w—w,)+ 76 (v + w,)

= 7[6(w+ @,) + mo (v — w,)]

A

m(w—aw,) | m(w—aw,)

| | |

_ joot e—J'CUot = @,
X(t) =sin(w,t) = — %
(t) (@,t) 2]
eja)ot _e—ja’ot
= F[sin(w,t)] = F|[ T 1=—1m0(0w—-w,)+1o6(w+ w,)
J

= Jalo(w+ @) —6(w— )]
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Fourier Transform of a Rectangular Function

A

1 t|<1/2 L

rect(t)=41/2 t|=1/2

0 t>1/2 L

N |-

FIx(1)] = X (@) = Tx(t)e‘j‘”‘dt

1/2
= F[rect(t)] = je‘jwtdt -

-1/2

1/2

e—jcot e—ja)/2 eja)/2

—jo —-jw

—Jo_,,

eja)/2 e—ja)/Z eja)/2 _e—ja)/2

v

Jjo o Jo
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jol2 e—ja)/2

Flrect(t)] =

jo
2 [eja)/Z _e—ja)/2]
) 2]
=Esin(a)/2) = sin(w/2)
0, (w/2)
Remember?
: sin(nt)
sinc(t) =
(t) "
or _
sinc(w) = sin(zw)
7T
=sinc(w/2x)
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Some Properties of Fourier Transform

1. Linearity
2.  Symmetry
3. Scaling

4. Time Shifting
5. Frequency Shifting
6. Time Differentiation

7. Convolution
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Linearity

klxl(t) + k2)(2 (t) ~ klxl(a)) + k2X2 (O))

FIx(1)] = X (@) = Tx(t)e‘ja’tdt

—Q0

= F[kx(t)] = ]ka(t)e-iwtdt

=k j x(t)e 1 dt

= kX (w)
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Symmetry

X(t) = %zx (w)e"do
X(t) = — Tx (@)e’da
2 7
27X(t) = T X (a)e'*da

27x(—t) = TX (a)e da

X(t) < X (o)

U

X (t) < 22x(—)

27X (—w) = T X (a)e “da

27X (—w) = Tx (t)e "dt

272X (—m) = Tx (t)e 1dt

= X(t) < 22%(—w)
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Scaling X(t) < X(w)

x(at) <+ X (%)
Let’s assume ‘a’is positive ‘a‘ a
F[x(at)] = j x(at)e “dt

—00

Let’s make a variable change al=a=adt=do

— F[x(at)] =§ Tx(a)e‘j‘”“’ada

-1 J-X(a)e_j(‘”/a)“da _1 X (Q)
a -, d d
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Time Shifting — linear phase shift
X(t—t,) & X(w)e '

FIx(t—t,)]= Tx(t —t,)e 1 dt

—0o0

Let’s make a variable change t-t,=a=dt=da

— F[x(t—t,)] = j x(a)e 1@ d g

= [X(@)e *e"*da

=g j x(a)e “da = e 1" X ()

—00
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Frequency Shifting - modulation
x(t)e!™ <= X (00— a,)

F[x(t)e!*'] = j x(t)e e 1 dt

—0o0

= [ x()e It
= [ x(e X dt

= X (- w,)
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Amplitude Modulation

m(t) - m(t)cos(at)
Modulated Signal

Modulating signal

m(t) < M (o) Siod (1) < Spoa (@)
cos(w,t)
Modulating carrier

Soq () =M(t) cos(a,t) & %[I\/I (v+w.)+M(o—w,)]

| M(f) | Smod(f)

N A iy

—2B 2B _
) a)c a)c 0,
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Amplitude Modulation — Another Method

m(t) - m(t)cos(at)
Modulated Signal

Modulating signal

co Square Wave
Modulagimg-carrier

Can we do it with square wave? If so, what else do we need?
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Amplitude Modulation — Another Method

m(t) ~ m(t) cos(27 t)
" Modulated Signal

Modulating signal

Can we do it with square wave? If so, what else do we need?

BPF
‘ ~ m(t)cos(e,t)
] " Modulated Signal

Square Wave What is the advantage of doing so?

m(t)

Modulating signal
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toM(f)

N

—278 278 n)
A SmOd (C())
1 Bandpass Filter
2 /
eoo ! | | /\ /\ /\ | | | o0 o:
—40, -30, -2 —w, —27B 2B o 20 3w, 4o,
- 1 | w
‘ mod ( f )
! : : /\ ; ! ! >
4o, -30, 2w, ~w, —27B 2B o, 20, 3w, 4o, w

[ Advantage: A higher multiple of carrier frequency can be chosen }
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Amplitude Demodulation — Synchronous

Low Pass Filter
m(t) COS(C()Ct) > :I > Sdem (t)
Modulated signal Demodulated Signal

cos(a.t)
Demodulating carrier

Demodulation: S, () = m(t) cos®(w.t)

= %[m(t) +m(t) cos(2e,1)]

Syen(@) & % M (w) +%[M (0+20.)+M(w—-2w,)]
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Amplitude Demodulation — Envelop Detection

(il .
e N
\ Vv V
M 2 H 3 N
A O ::C R
Charges | Discharge| )
Time Constant = RC
C should charge quick enough C should decay slow enough
RC > 1 RC < 1
@, 278
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Time Differentiation

. 1 ( ot
x(t)—EJ;OX(a))e’ dw

dx(t) 1 % d
= X(w)—e'd
dt j (@) g8 9

dx(t) 1 7. ot
— ﬂ[oij(w)e dw

dx(t)
dt
dx(t)
dt

=F [joX ()]

< JoX (o)
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Convolution X(t)*y(t) = TX(T)Y(t —7)d7

|f x(t) = X(w) and y(t) =Y (o)
U
Then x(t)*y(t) = X (@)Y (w)

FIx®)*y®l= [e [ [x(x)y(t-r)dz]dt
= [x@) [e " y(t-7)dtldz

= [X@IY (@) 7 1dz
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o0

FIX®)*y®]= [X(2)Y (@)e 1z

—0o0

=Y (w) T X(7)e 1 dr

=Y ()X (®)

= X(1)*y(t) & X ()Y ()
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Let’s revisit LTI system - again

+ © ’\F\;\/‘ o +
X(t) ) =—  y(b)
dY()
~ +y(t) = x(t)

RCjoY (o) +Y (0) = X (w)

Y(w) 1

=— = H(o)
X(w) 1+ jawRC

=Y (w) = X(o)H(®)

but we know y(t)=x(t)*h(t)
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Some Properties of Fourier Transform
X(t) = rect(t)
X (@) =sinc(w/ 27) X (f)=sinc(f)

Find the Fourier Transform of the following functions

X(t—2), 2x(t), x(2t)
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Some Properties of Fourier Transform
X(t) = rect(t)
X (@) =sinc(w/ 27) X (f)=sinc(f)

Find the Fourier Transform of the following functions

X(t—2), 2x(t), x(2t)

X(t—2) <> X (@)e 1 =sin c(zﬁ)eizw
7T
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Some Properties of Fourier Transform
X(t) = rect(t)

X (@) =sin c(w/! 27) X (f)=sinc(f)

Find the Fourier Transform of the following functions

x(t—2), 2x(t), x(2t)
X(t—2) <> X (w)e * =sin c(zﬁ)ejzw

2%(t) <> 2X (@) = 2sin c(%)
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Some Properties of Fourier Transform
X(t) = rect(t)

X (@) =sin c(w/! 27) X (f)=sinc(f)

Find the Fourier Transform of the following functions

X(t—2), 2x(t), x(2t)

X(t—2) & X (w)e*? =sin c(ﬁ)e—ﬁw
27
2X(t) <> 2X (@) = 2sinc(——)
27T

1., 0, 1. @
X(2t) <> > X (E) = Esm C(E)
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Some Properties of Fourier Transform

X(t) = rect(t)

X (@) =sin c(w/! 27) X (f)=sinc(f)

Find the Fourier Transform of the following functions

X(t—2), 2x(t), x(2t)

X(t—2) & X (w)e*? =sin c(ﬁ)e—ﬁw
27
2X(t) <> 2X (@) = 2sinc(——)
27T

1., 0, 1. @
X(2t) <> > X (E) = Esm C(E)

How about FT of

2x(2t —2)
!

. [4)) :
sinc(—)e™ !?
(47Z)
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Time For Discrete Time Fourier Series

CT Exponential Fourier Series

KB)= 3 X[k

k=—o0
here f =
" _1
F TF
1 to+TE _
X[k]=— j x(t)e 127 KXt gt
T

DT Exponential Fourier Series

k=00 _
X[n] _ Z X [k]eJZE(kFF)n

k=—o0
1
where F- = N—F
1 n=ng+Ng -1 _
X [k] = Z X[n]e—jZﬂ(kF,: )n
N F n=n,
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One Important Difference

CT Exponential Fourier Series

KD)= 3 X[k

k=—00
A fo=m
wnere F TF
Basis function gl 27 (ke )t

pi2r(keTe) fet _ qi2n(Ke)tg j2m(Te fe)t
_ pli2n(ke)ty j2nt
= el Me)l cos(241) + jsin(2at)]

g2 for all t

DT Exponential Fourier Series

k=00 _
X[n] _ Z X [k]ejbr(kFF)n

K=—o0

1
F —_—
where . N,

Basis function 27 (kFe)n

e =€ e

:ejZﬂ(kFF)nejZﬂn

= el )N cos(2/m) + jsin(27n)]

— g2 (kKFe)n for all n
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One Important Difference ... cont.

CT Exponential Fourier Series

k=00 _
X(t) _ Z X [kPJZﬂ(kfF)t

k=—o0
fo L
where TT
Basis function pl2m(Ke)t

DT Exponential Fourier Series

k=00 _
X[n] _ Z X [k]GJZﬂ(kFF)n

k=—c0
where F_ 1
F NF
Basis function ~ e!?7(e)n

Still need infinite number
of exponential functions

Need only Ng exponential
Functions

k=—c0

k=00 _
S x()= Y X[k

=xnl= > X[kp!Z

a
Y g

Department of Electrical and Computer Engineering



DTFSvs. CTFS

DT signal, x[n] () CT signal, x(¢)
1 1}
nn

: ”IIIJIHI! l I\IHIHH HI&\HI‘HEJIH > n . 1 > n
| 128 -16 128
X[&]] IX[&]]

0.5
j poe - +—> &
Phase of X[k] Phase of X[k]
i 4

. s :

w2

Figure 4.50

Mk

" JII

A DT signal with its DTFS harmonic function and the corresponding CT signal with its CTFS harmonic function.

. UMD/
Q’NEE‘L"
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Transition from DT Fourier Series to DT Fourier Transform

1 n=ny+Ng -1 _
X[k]=- Y x[n iz=®er

NF n=n,

1 n=(Ng-1)/2 _
X[k]=—— ) x[nfiz=¢e)

NF N=—Ng/2

X[k]= Ni Zx[n]e“'z”(k&)n When Np — o0

F N=—o0
Let’s define a function
X(F)= > x[nf**" - X[k]:iX(kFF)
N=—o0 F
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Transition from DT Fourier Series to DT Fourier Transform

1 n=ny+Ng -1 _
X [k] = Z X[n]e—jZE(kF,:)n
N F n=n,
1 n=(Ng-1)/2 _
X [k] _ = Z X[n]e—jZE(kFF )n

A\ n=—(Ng-1)/2

X[k]= Ni Zx[n]e“'z”(k&)n When Np — o0

F N=—o0
DTFT
Let’s define a function /
X(F)= > x[nf*"" - X[k]:iX(kFF)
N=—o0 F
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Inverse Discrete Fourier Transform

x[n] = Z X [k]ejZn(kF,:)n

k:ko

k:NF—l

X[n] _ Z X [k]ejZE(kF,:)n
k=0

k=Ng 1) _
X[n]= Z XE\TFF )eJZn(kFF)n
k=0 F

X (KAF) o karn
A= 2 1(/AF it
k=0
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k=Ng -1

5 X(KAF) i2zkar)n

)= ) 2 e
k=0

k=Ng -1 _
XIN]= D X (KAF)AFe!2(en)r
k=0

KAF changes from 0—>1

— x[n] — j X (F)ejZ”F”dF DT Inverse Fourier Transform
1
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Discrete Time Discrete Time

Fourier Transform Inverse Fourier Transform
X(F)= > xnk 1> x[n] = [ X (F)e’**"dF
N=—o0 1
OR OR
X(Q)= 3 xn XNl = — [ X (F)e*de
N=—00 272- 2
Where 27 =Q)
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Some Properties of Discrete Fourier Transform

1. Linearity

2. Scaling

3. Time Shifting

4. Frequency Shifting
5. Time Differencing

6. Convolution
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Relationship between Time and Frequency Domains

Discrete Continuous

Frequency Frequency
Continuous Time CTFS CTFT
Discrete Time DTES DTFT
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CT

DT

With Examples

Discrete Frequency

Continuous Frequency

() 13X £)1
Ak e
” g xm
! -4 4
14 f
Phase of X[k] * : R
; - *{ 6 £
TD = )4’ X 2 Pk -4 ’IT I—l |_|_=f
i ] 4 4
ook
CTES CTFET
I3( 7))
3Lk p
: ;
R 2 1 2 F
1 3 .|.-n.|..|”|..|-.uul..|‘ pe et 1 P P ";.C 1 l..-z'ig"'l
| | s Phasiof X[k] Phase of X(F)
Nw NO | | 7 b4
i N, N,
7 2 e
- Ny ”
DTES DTFT
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Parseval’s Theorem in Continuous Frequency

Energy of CT Signals Energy of DT Signals
E = ﬂx(t)\zdt E, = i\x[n]\2
= [|X ()] df = [|X(F)|"dF
—o0 1
I 1
:%I\X(a))\zda) =~ [IX@f do
_ 27
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E, = T\x(t)\zdt
— Tx(t)x*(t)dt
j x(t)[— j X *(w)e 1 dwldt
iﬂ];x *(a))[ZX(t)ej“’tdt]da)

_1 Tx*(w)X(a))da)zi ]O\X(w)\zda)
T 2T S
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Parseval’s Theorem in Discrete Frequency

Power of Periodic CT Signals

- = j X(t)| dt

O'%

= 3 IX KT’

K=—00

Power of Periodic DT Signals

= Sl

o n=<Ng>

> IXIK]

k=<Ng>
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Kt)= 3 X[k

k=—00

Energy of each of the above frequency component over T,

2

dt

_ J27 (kfp )t
E,1 xpq = ”X[k]e "
TO

= [IXIK] dt =X [K]"T,

Department of Electrical and Computer Engineering



k=00 _
X(t) = > X[kl
k=—o0

= X[0]+ X[1]e’#* ") + X[2]e!#7*1Ft 4 ..

+ X[ X[—2]ei e

From conservation of energy principle

2

E, .. =Tl X[O] +| X[ +|X[2]" +...

2 -
+ ...

+ X[ +[X[-2

=P, == B, =IXI00 +[X 1 + X2 +..

0

X[+ X2 +...]
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=P, :TiEX'TO =[IX [0 +|X [ +|X[2]" +...

0

X[+ X2+
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Example

Determine the power of x(t) without performing any integration

X(t) = Acos(2Af 1) = Z X [k]ejzﬂ(kf,:)t

_ X[l]ej27r(f,:)t n X[_l]ej27r(—f,:)t

:éejZﬂ(f,:)t +éej27z(—fF)t
2 2
A AT A
>P =—+—=—
4 4 2
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