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From Fourier Series to Fourier Transform
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Let’s Consider a function
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Fourier Transform of a Singal x(t)
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Now Let’s talk about the Inverse Fourier Transform

)]([)( txFX 



Department   of   Electrical   and   Computer   Engineering







k

tjk FekXtx


][)(







k

tjk

F

F Fe
T

kX
tx

 )(
)(









k

tjk

F

e
T

kX
tx )(
)(












22

F

FT








k

tjke
kX

tx 





2

)(
)(

 


F
TF

lim



Department   of   Electrical   and   Computer   Engineering







k

tjkekXtx 


)(
2

1
)(




  






k

tjkekXtx )(
2

1
)(




 deXtx tj






 )(
2

1
)(

)]([)( 1 XFtx  Inverse Fourier Transform












22

F

FT








k

tjke
kX

tx 





2

)(
)(



Department   of   Electrical   and   Computer   Engineering

)]([)( 1 XFtx 




 deXtx tj






 )(
2

1
)(

Inverse Fourier Transform






 dtetxX tj )()(

Fourier Transform of a Signal x(t) )]([)( txFX 
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Fourier Transform of a Signal x(t)
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Let’s revisit LTI system
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1. An impulse function

2. A constant function (via inverse transform)

3. Complex exponential function (via inverse transform)

4. Sinosoidal Function

5. Gate Function

Some Examples of Fourier Transform
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Fourier Transform of a Constant Function
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Fourier Transform of a Singal x(t)
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Fourier Transform of a Complex Exponential

Let’s find the Inverse Fourier Transform of (0)
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Fourier Transform of a Sinusoidal Signal
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Fourier Transform of a Rectangular Function
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1. Linearity

2. Symmetry

3. Scaling

4. Time Shifting

5. Frequency Shifting

6. Time Differentiation

7. Convolution

Some Properties of Fourier Transform
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Symmetry
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Scaling
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Time Shifting – linear phase shift
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Amplitude Modulation
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Amplitude Modulation – Another Method

Can we do it with square wave? If so, what else do we need?
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Amplitude Modulation – Another Method

Can we do it with square wave? If so, what else do we need?
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What is the advantage of doing so?
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Amplitude Demodulation – Synchronous

Demodulation: )(cos)()( 2 ttmtS cdem 
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Amplitude Demodulation – Envelop Detection
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Convolution 
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Let’s revisit LTI system - again
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Some Properties of Fourier Transform

)2/(sin)(  cX 
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Find the Fourier Transform of the following functions
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Some Properties of Fourier Transform
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Find the Fourier Transform of the following functions
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Some Properties of Fourier Transform

)2/(sin)(  cX 
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Find the Fourier Transform of the following functions

)2(),(2),2( txtxtx 
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Some Properties of Fourier Transform

)2/(sin)(  cX 
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Find the Fourier Transform of the following functions

)2(),(2),2( txtxtx 






 22 )

2
(sin)()2( jj eceXtx  

)
2

(sin2)(2)(2



 cXtx 

)
4

(sin
2

1
)

2
(

2

1
)2(




cXtx 



Department   of   Electrical   and   Computer   Engineering

How about FT of 
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Some Properties of Fourier Transform
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Find the Fourier Transform of the following functions
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Time For Discrete Time Fourier Series

CT Exponential Fourier Series
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One Important Difference

CT Exponential Fourier Series
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One Important Difference … cont.

CT Exponential Fourier Series
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DTFS vs. CTFS
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Transition from DT Fourier Series to DT Fourier Transform
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Transition from DT Fourier Series to DT Fourier Transform
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Inverse Discrete Fourier Transform
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1. Linearity

2. Scaling

3. Time Shifting

4. Frequency Shifting

5. Time Differencing

6. Convolution

Some Properties of Discrete Fourier Transform
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CTFS CTFT

DTFS DTFT

Continuous Time

Discrete Time

Continuous

Frequency

Discrete

Frequency

Relationship between Time and Frequency Domains
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Discrete Frequency Continuous Frequency

CT

DT

With Examples
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Parseval’s Theorem in Continuous Frequency
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Parseval’s Theorem in Discrete Frequency
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Example

Determine the power of x(t) without performing any integration
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