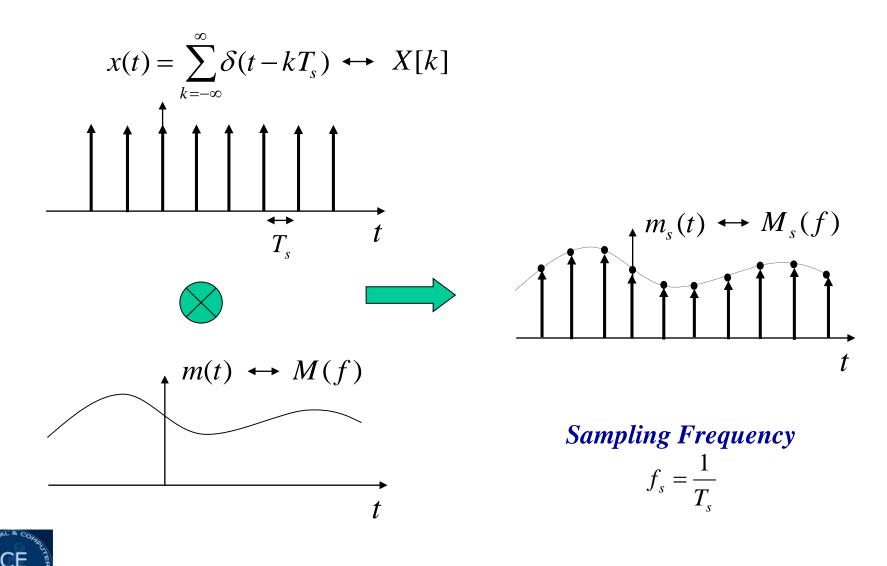
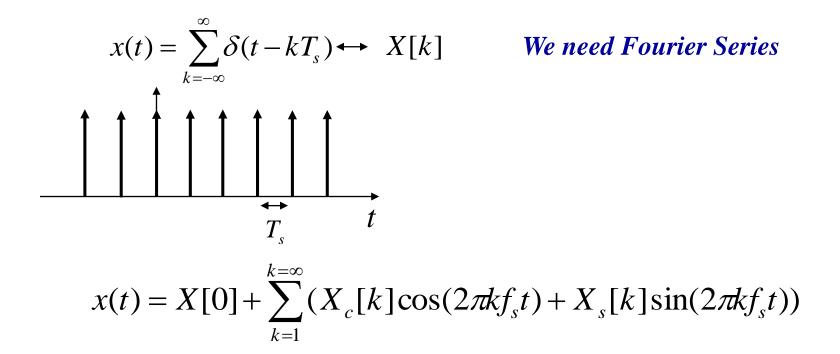
Application of Combined Fourier Series Transform (Sampling Theorem)





$$X[0] = \frac{1}{T_s} \int_{t_0}^{t_0 + T_s} x(t) dt = \frac{1}{T_s} \int_{0}^{T_s} \delta(t) dt = \frac{1}{T_s}$$

$$X_{s}[k] = \frac{2}{T_{s}} \int_{t_{0}}^{t_{0}+T_{s}} x(t) \sin(2\pi k f_{s} t) dt = 0$$

$$X_{c}[k] = \frac{2}{T_{s}} \int_{t_{0}}^{t_{0}+T_{s}} x(t) \cos(2\pi k f_{s} t) dt$$
$$= \frac{2}{T_{s}} \int_{0}^{T_{s}} \delta(t) \cos(2\pi k f_{s} t) dt = \frac{2}{T_{s}} \cos(0) = \frac{2}{T_{s}}$$

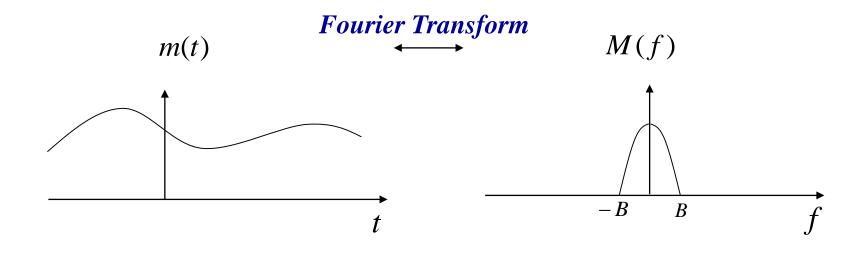
Let's go back to Fourier Series representation

$$x(t) = X[0] + \sum_{k=1}^{k=\infty} (X_c[k]\cos(2\pi k f_s t) + X_s[k]\sin(2\pi k f_s t))$$

$$= X[0] + \sum_{k=1}^{k=\infty} X_{c}[k] \cos(2\pi k f_{s} t)$$

$$\Rightarrow x(t) = \frac{1}{T_s} + \frac{2}{T_s} \sum_{k=1}^{k=\infty} \cos(2\pi k f_s t)$$

What about m(t)? – need Fourier Transform



B is the Bandwidth of m(t)

We now have x(t) as frequency representation via Fourier Series

$$x(t) = \frac{1}{T_s} + \frac{2}{T_s} \sum_{k=1}^{k=\infty} \cos(2\pi k f_s t)$$

And m(t) as Frequency representation via Fourier Transform

 $m(t) \leftrightarrow M(f)$

Let's multiply m(t) with x(t)

$$m(t)x(t) = \frac{1}{T_s}m(t) + \frac{2}{T_s}\sum_{k=1}^{k=\infty}m(t)\cos(2\pi kf_s t)$$

What is the frequency representation of m(t)x(t)?

$$m(t)x(t) = \frac{1}{T_s}m(t) + \frac{2}{T_s}\sum_{k=1}^{k=\infty}m(t)\cos(2\pi kf_s t)$$

We need to take Fourier Transform

$$F[m(t)x(t)] = F[\frac{1}{T_s}m(t) + \frac{2}{T_s}\sum_{k=1}^{k=\infty}m(t)\cos(2\pi kf_s t)]$$

$$M_{s}(f) = \frac{1}{T_{s}}M(f) + \frac{2}{T_{s}}\sum_{k=1}^{k=\infty} \left[\frac{1}{2}(M(f - kf_{s}) + M(f + kf_{s}))\right]$$

$$=\frac{1}{T_{s}}M(f)+\frac{1}{T_{s}}\sum_{k=1}^{k=\infty}[M(f-kf_{s})+M(f+kf_{s})]$$

$$F[m(t)x(t)] = M_{s}(f) = \frac{1}{T_{s}}M(f) + \frac{1}{T_{s}}\sum_{k=1}^{k=\infty}[M(f-kf_{s})+M(f+kf_{s})]$$

$$M(f)$$

$$M(f)$$

$$M_{s}(f)$$

$$M_{s}(f)$$

$$M_{s}(f)$$

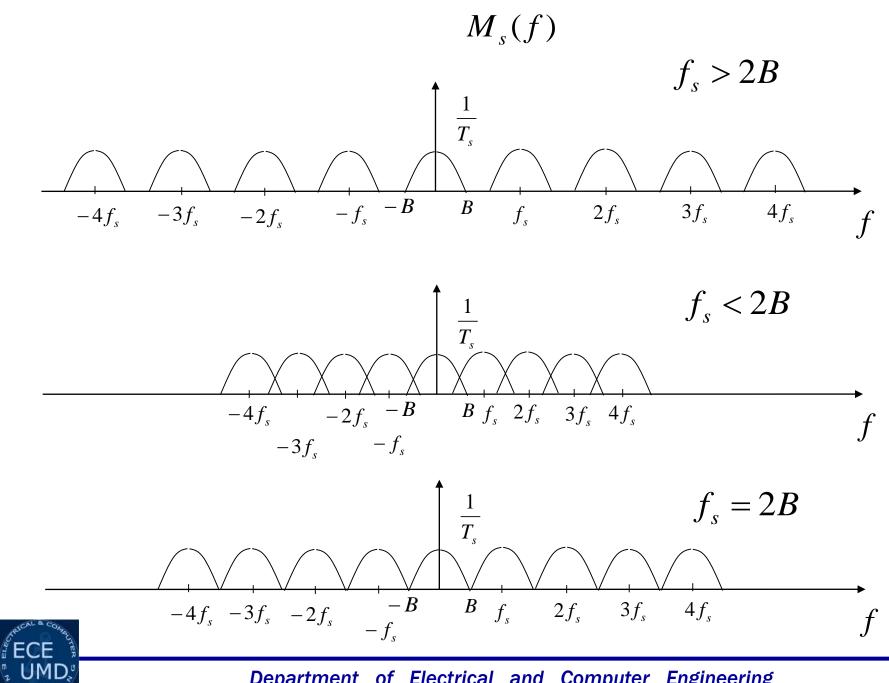
$$M_{s}(f)$$

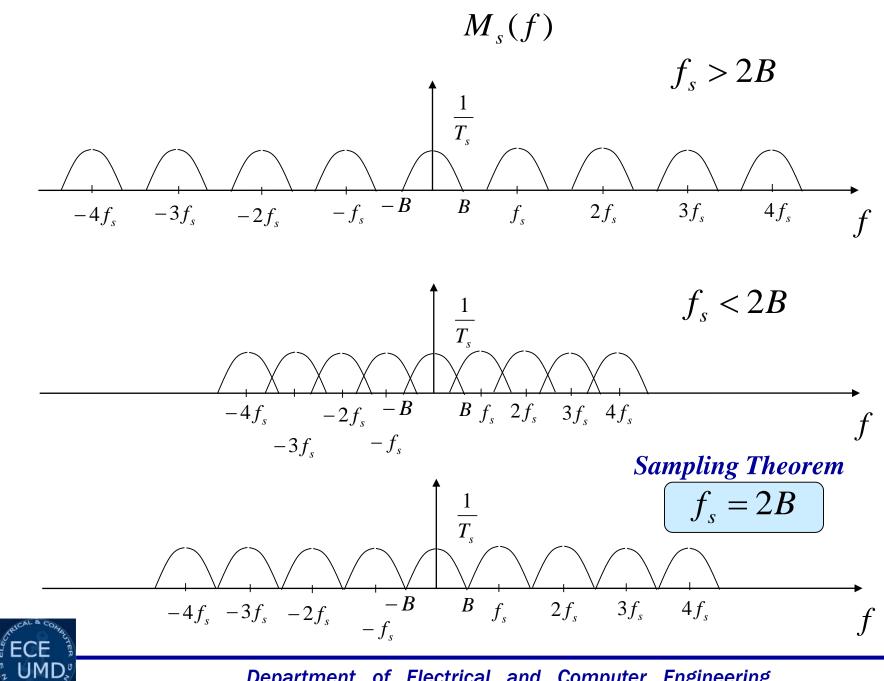
$$M_{s}(f)$$

$$M_{s}(f)$$

ECE UMD

NEEP

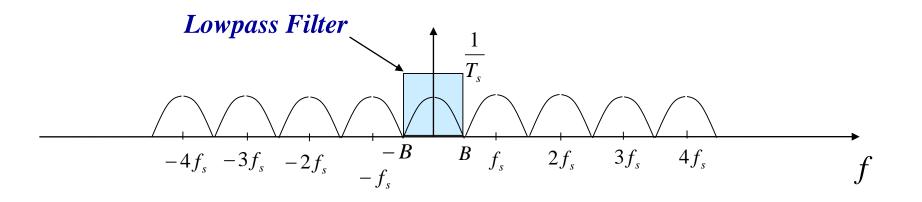




Sampling Theorem

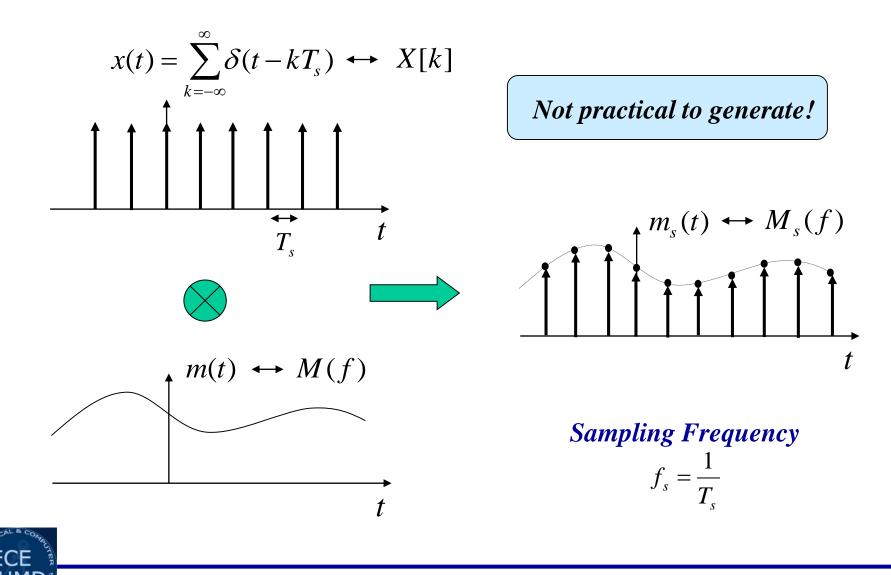
Sampling frequency should be at least equal to or greater than twice the bandwidth of the message signal for successful recovery of the signal from it's samples

$$f_s \geq 2B$$

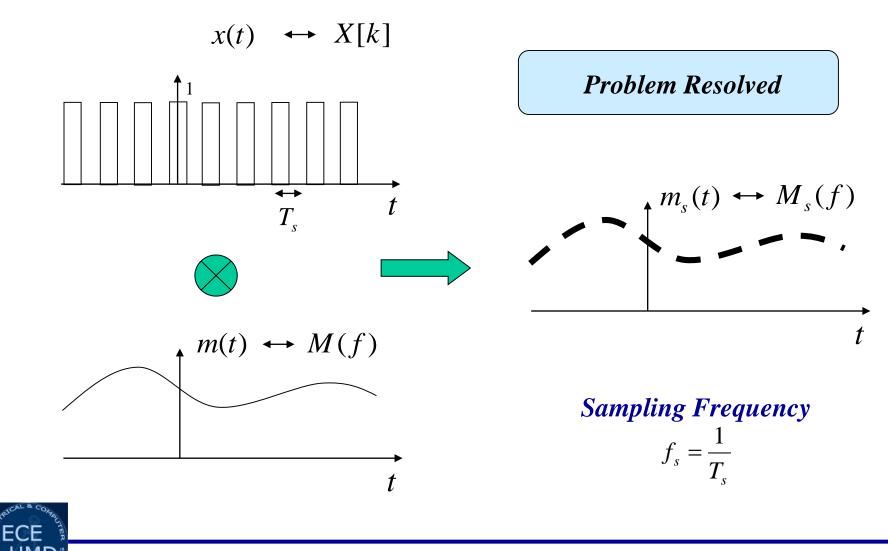


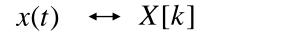
bandwidth of lowpass filter = B Hz

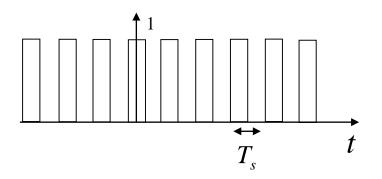
A practical problem with Sampling



Let's Try Square Wave







We know

$$X[0] = \frac{1}{2} \qquad X_{c}[k] = \frac{4}{\pi k} \sin(\frac{\pi k}{2}) \qquad X_{s}[k] = 0$$

We need Fourier Series

and

$$x(t) = X[0] + \sum_{k=1}^{k=\infty} (X_c[k]\cos(2\pi k f_s t) + X_s[k]\sin(2\pi k f_s t))$$

$$\Rightarrow x(t) = \frac{1}{2} + \sum_{k=1}^{k=\infty} \frac{4}{\pi k} \sin(\frac{\pi k}{2}) \cos(2\pi k f_s t)$$

We now have x(t) as frequency representation via Fourier Series

$$x(t) = \frac{1}{2} + \sum_{k=1}^{k=\infty} \frac{4}{\pi k} \sin(\frac{\pi k}{2}) \cos(2\pi k f_s t)$$

And m(t) as Frequency representation via Fourier Transform

 $m(t) \leftrightarrow M(f)$

Let's multiply m(t) with x(t)

$$m(t)x(t) = \frac{1}{2}m(t) + \sum_{k=1}^{k=\infty} \frac{4}{\pi k}\sin(\frac{\pi k}{2})m(t)\cos(2\pi k f_s t)$$

What is the frequency representation of m(t)x(t)?

$$m(t)x(t) = \frac{1}{2}m(t) + \sum_{k=1}^{k=\infty} \frac{4}{\pi k}\sin(\frac{\pi k}{2})m(t)\cos(2\pi k f_s t)$$

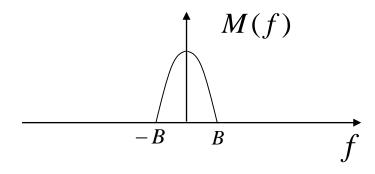
We need to take Fourier Transform

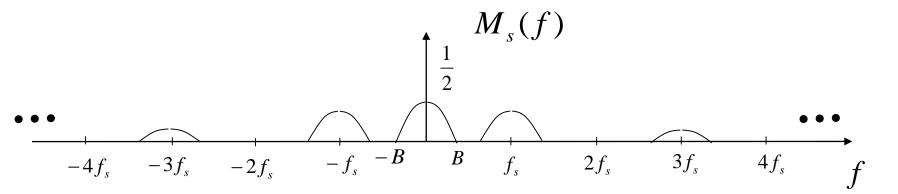
$$F[m(t)x(t)] = F[\frac{1}{2}m(t) + \sum_{k=1}^{k=\infty} \frac{4}{\pi k}\sin(\frac{\pi k}{2})m(t)\cos(2\pi k f_s t)]$$

$$M_{s}(f) = \frac{1}{2}M(f) + \sum_{k=1}^{k=\infty} \frac{4}{\pi k} \sin(\frac{\pi k}{2}) \left[\frac{1}{2}(M(f - kf_{s}) + M(f + kf_{s}))\right]$$

$$=\frac{1}{2}M(f) + \sum_{k=1}^{k=\infty} \frac{2}{\pi k} \sin(\frac{\pi k}{2}) [(M(f - kf_s) + M(f + kf_s))]$$

$$F[m(t)x(t)] = M_s(f) = \frac{1}{2}M(f) + \sum_{k=1}^{k=\infty} \frac{4}{\pi k}\sin([M(f - kf_s) + M(f + kf_s)])$$

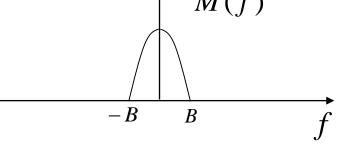


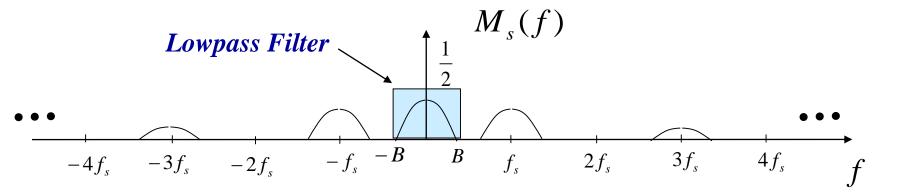


ECE UMD

$$F[m(t)x(t)] = M_{s}(f) = \frac{1}{2}M(f) + \sum_{k=1}^{k=\infty} \frac{4}{\pi k}\sin([M(f - kf_{s}) + M(f + kf_{s})])$$

$$\uparrow M(f)$$





Sampling Theorem still works with practical samples

Distortion and Linear systems

$$x(t) \longrightarrow h(t) \longrightarrow y(t)$$

h(t) - Impulse Response of a Linear Time Invariant System

$$y(t) = x(t) * h(t)$$

$$\Rightarrow Y(\omega) = X(\omega)H(\omega) \qquad h(t) \Leftrightarrow H(\omega)$$

Distortionless System

ECE

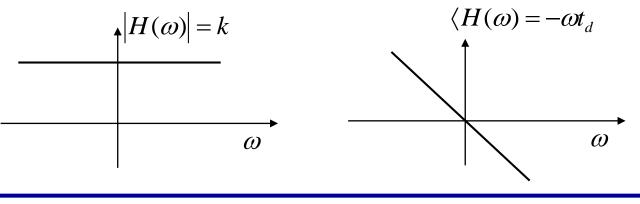
JMD.

$$y(t) = kx(t - t_d)$$

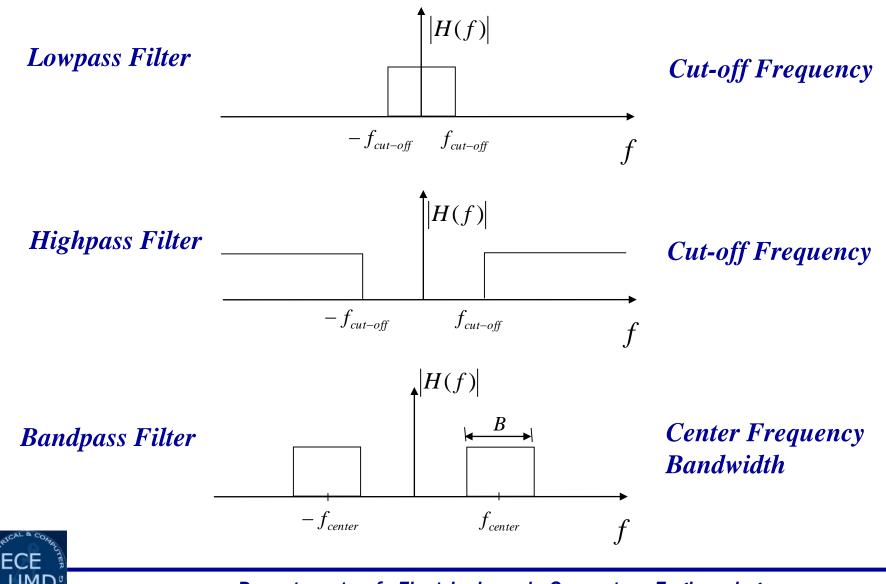
$$\Rightarrow Y(\omega) = kX(\omega)e^{-j\omega t_d}$$

we know $Y(\omega) = X(\omega)H(\omega)$

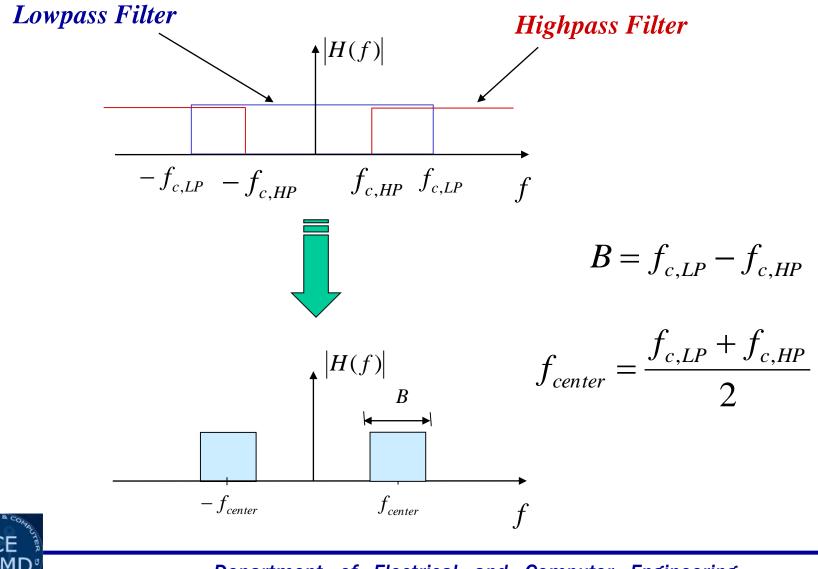
$$\Rightarrow H(\omega) = k e^{-j\omega t_d}$$



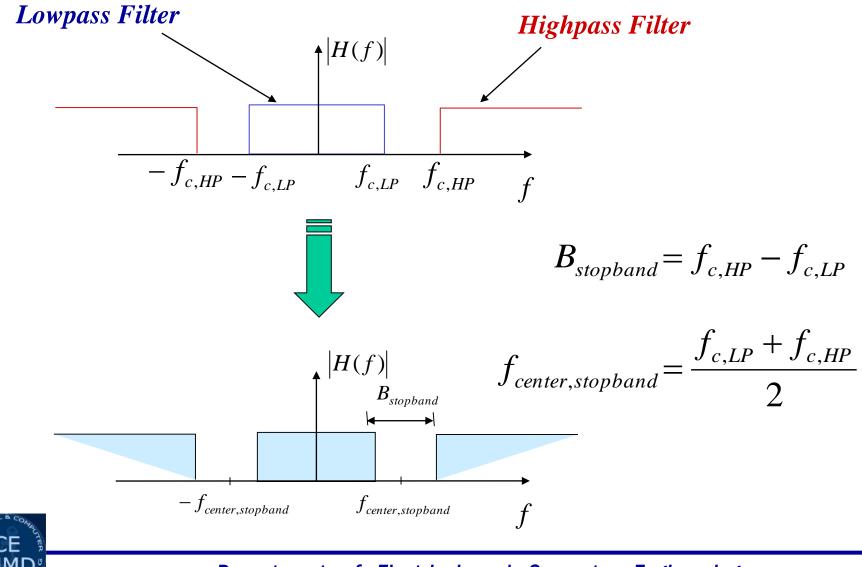
Filters



Lowpass and Highpass combined to generate Bandpass Filter



Lowpass and Highpass combined to generate Bandstop Filter



How a signal should look like after passing through a filter

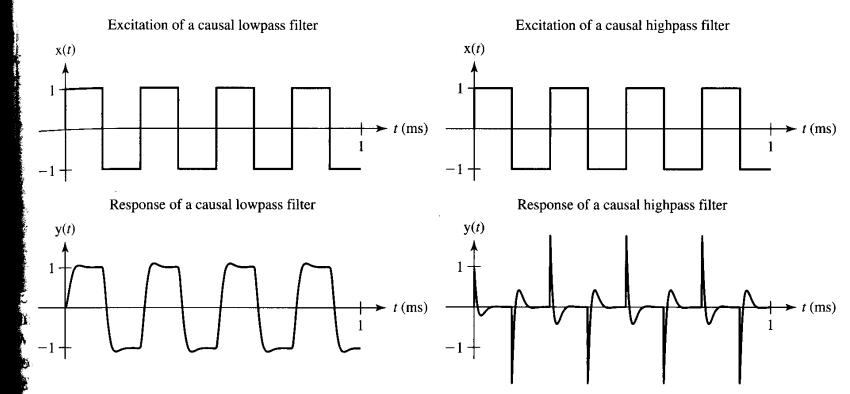
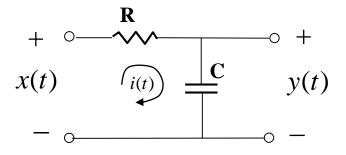


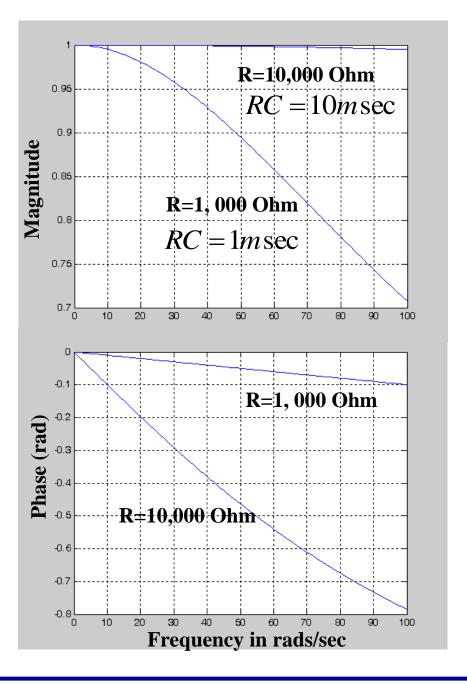
Figure 6.17 Excitations and responses of lowpass and highpass CT filters.

Practical Lowpass Filter

Basic Lowpass Filter



$$H(\omega) = \frac{1}{1 + j\omega RC}$$

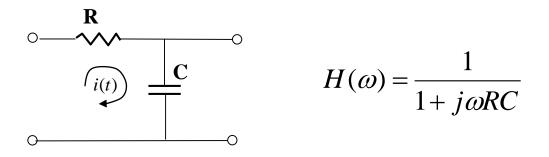


C=1 µF

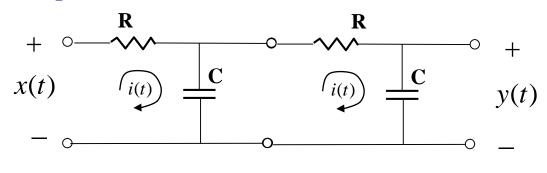
ECE DIND.

Department of Electrical and Computer Engineering

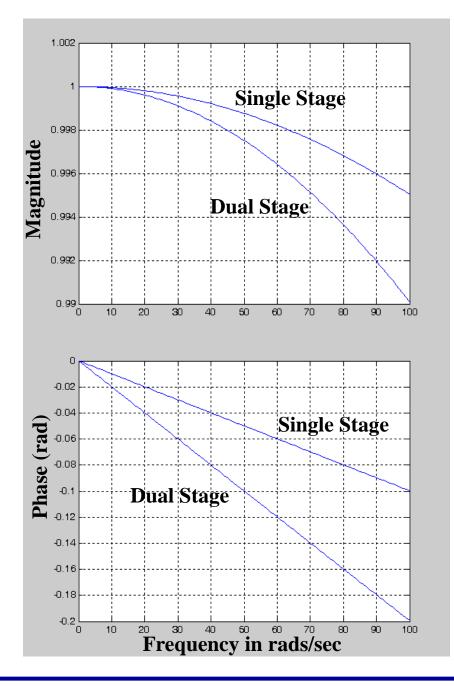
Single Stage Lowpass Filter



Two Stage Lowpass Filter



$$H(\omega) = \left(\frac{1}{1 + j\omega RC}\right)\left(\frac{1}{1 + j\omega RC}\right)$$

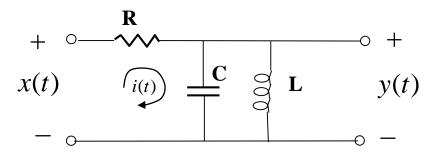




R=1000 Ohm C=1 μF

Practical Bandpass Filter

Basic Bandpass Filter



$$H(\omega) = \frac{j\omega/RC}{(j\omega)^2 + j(\omega/RC) + (1/LC)}$$

$$\omega_0 = \pm (1/\sqrt{LC})$$

Magnitude and Phase Response of BPF

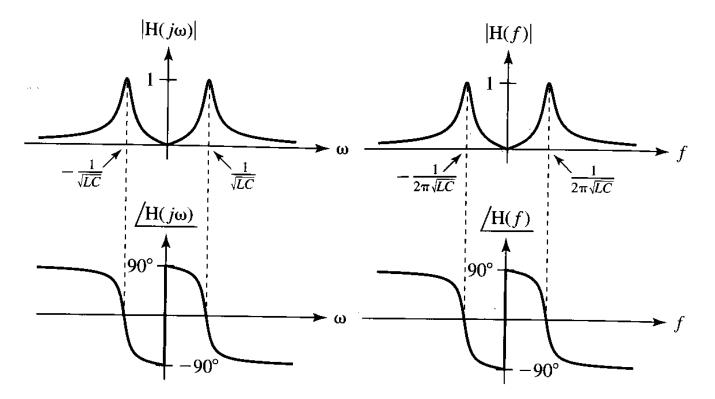
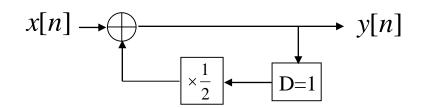


Figure 6.36 Magnitude and phase frequency responses of a practical *RLC* bandpass filter.

Discrete Time Filters



$$y[n] - \frac{1}{2}y[n-1] = x[n]$$

Impulse Response

$$h[n] = \left(\frac{1}{2}\right)^n u[n]$$

Transfer Function by taking DTFT of h[n]

$$H(F) = \frac{1}{1 - \frac{1}{2}e^{-2\pi F}}$$

CT vs. DT Lowpass Filters

Continuous Time

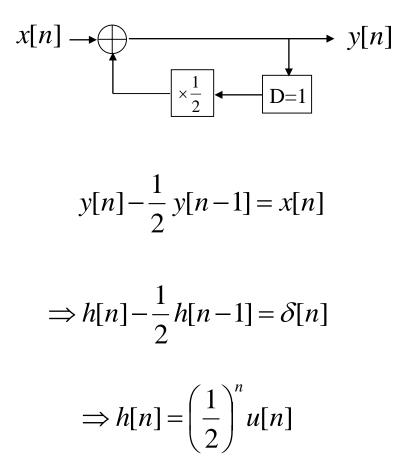
 $\begin{array}{c} \mathbf{R} \\ + \circ \underbrace{\qquad } & & \circ \\ x(t) \\ - \circ \underbrace{\qquad } & & \mathbf{C} \\ \mathbf{V}(t) \\ \mathbf{V}($

$$RC\frac{dy(t)}{dt} + y(t) = x(t)$$

$$\Rightarrow RC \frac{dh(t)}{dt} + h(t) = \delta(t)$$

 $\Rightarrow h(t) = e^{-t/RC}u(t)$

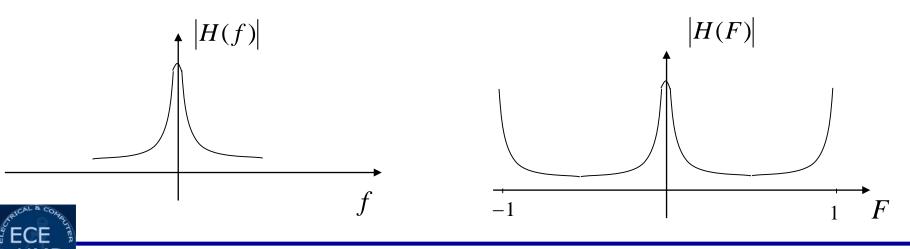
Reminder Slide



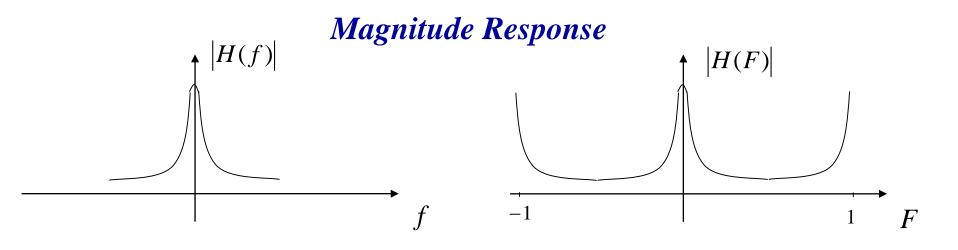
CT vs. DT Lowpass Filters ... cont.

Time Response

Frequency Response



CT vs. DT Lowpass Filters ... cont.



Phase Response

