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From Fourier Transform to Laplace Transform
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Fourier Transform of a Constant Function
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Fourier Transform of a Singal x(t)
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Let’s try indirectly – let’s find the Inverse Fourier Transform of d()
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What about Fourier Transform of Unit Step Function
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Does not Converge
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What about Fourier Transform of Unit Step Function
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How Convergence Occurs
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Laplace Transform
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Laplace Transform - Example
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Laplace transform exists
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Now Let’s look at another example
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Does Laplace Transform exists?
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This integral does not converge

Therefore, the defined Laplace transform does not exist for this function
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Bilateral Laplace Transform

Unilateral Laplace Transform
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Bilateral vs. Unilateral Laplace Transform

To avoid non-convergence Laplace transform is 

redefined for causal signals

(applies to causal signals only)
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Laplace Transform - Example
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Properties of Laplace Transform

Linearity
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Time Differentiation – once
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Time Differentiation – twice
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Initial Value Theorem
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Final Value Theorem
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Example (1)
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What is the final value of the impulse response?

What is the final value of the unit step response?

What is the impulse response in time domain?

What is the unit step response in time domain?
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z Transform
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First DTFT

Then z-transform
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Unilateral z Transform

For similar reasoning as in Laplace Transform, unilateral z-transform is used

Applies to only causal signals


