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1. Introduction. It is not surprising that there are many schemes that utilize
modular arithmetic to append a check digit to product identification numbers for
error detection. Two of the better known schemes—the ZIP code bar code and the
International Standard Book Number (ISBN)—have been the subjects of articles in
the UMAP Journal |2), [ 7). The schemes used for the Universal Product Code (UPC)
and passports are described in [6] and [1].

What is surprising to us is the diversity of the methods in use and the fact that
some of them are poorly conceived! In this note we examine several of these
schemes.

2, Check digits: from money orders to library books. We begin with the least
effective of the methods we have found and work our way up to the best one. The
Postal Service’s money-order identification number consists of ten digits and a
check digit. The check digit is the remainder modulo 9 of the 10-digit number. In
contrast to the schemes mentioned in the introduction, this method does not detect
all single errors! Indeed, excluding the check digit, a substitution of a 9 for a 0 or
vice versa goes undetected. All single-digit errors involving the check digit are
detectable. Thus the single-digit error-detection rate for this method is 970,/990 or
98.0%. (We assume all errors are equally likely.) Moreover, the only transposition
errors detected by this method are those involving the check digit. That is, an error
resulting from the transposition of two consecutive digits such.as ...53... instead
of ...35... is undetected while ...53 instead of ...35 is detected. Because the
digit 9 can never occur as a check digit, this method detects 9 - 10° — 8 of a total of
90 - 10° — 8 possible transposition errors for a rate of 10.0%.

A similar and equally ineffective method is employed on VISA traveler’s checks.
There the check digit is the additive inverse modulo 9 of the remainder upon
division by 9.

Federal Express, airline companies, and the United Parcel Service use a method
that is slightly less effective for detecting single errors but fairly effective for
detecting transposition errors in their identification numbers. The U.P.S. identifica-
tion number, for instance, consists of nine digits plus a check digit. The check digit
is the remainder modulo 7 of the 9-digit number. Of course, any substitution of b
for a in the first nine digits where |¢ — b| = 7 will go undetected. The single-error
detection rate for this method is 846 /900 or 94.0%. This method detects transposi-
tion errors at the rate of (762 - 107 — 5) /(810 - 107 — 5) or 94.1%.

The Chemical Abstract Service assigns chemicals a registry number together with
a check digit calculated in the following way. The number a,a, -+ a, (k < 7) has
appended the check digit (a,, a,,...,4a,) - (k, k—1,...,2,1) mod10. All single
errors in positions with weighting factors 1, 3, or 7 as well as the check digit position
are detected; errors of the form a — b where |a — b| = 5 go undetected in positions
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with weighting factors 2, 4, or 6; errors of the form a — b where |a — b| is even go
undetected in the position with a weighting factor of 5. For k = 7, this yields a
single-error detection rate of 65/72 or 90.3%. On the other hand, all transposition
errors not involving the check digit are detected. The errors of the type ... ab —
... ba go undetected when (a,, a,, a;, a4, as, ag) - (7,6,5,4,3,2) = 5mod 10. Since
the probability that this dot product is any particular digit is .1, this yields a
transposition error detection rate of 62/63 or 98.4%.

Identification numbers for banks (as appearing on checks, for instance) have
eight digits, a,a, --- a4, and a check digit

c=(a,a,,...,a5)-(7,3,9,7,3,9,7, 3)mod 10.

For example, the bank number 09190204 gives c =0+ 27+ 9+ 63 +0+ 18+ 0
+ 12 = 129 = 9 mod 10. This method detects 100% of all single errors and 80/90 or
88.9% of all transposition errors. In particular, the only undetectable transpositions
are those of the form ab — ba where |a — b| = 5. The advantage this weighting
scheme has over one involving just two distinct weighting factors such as
(7,3,7,3,7,3,7,3) is that the former will detect most errors of the form
...abc... > ...cha... while the latter will detect no errors of this form except
those involving the check digit.

The most sophisticated method we have found in use is the “Code-a-bar” system
used by many libraries. Here each thirteen digit identification number a,a, -+ a;;
is assigned the check digit

—(ay, a,,...,0a5) - (2,1,2,1,2,1,2,1,2,1,2,1,2) — r mod 10,
where r is the number of the digits among a,, a,, a5, a4, ay, a,;, 4,5 greater than or
equal to 5. For example, the identification number 3125600196431 yields the check
digit
-(6+1+4+5+12+0+0+1+18+6+8+3+2)—~2=—68

= 2mod 10.
This method detects all single errors and all transposition errors except 09 & 90.
Thus the detection rate for transposition errors is 88 /90 or 97.8%. As shown by
Gumm [5], it is not possible to improve upon these rates with any system that uses
conventional techniques based on addition modulo 10.

3. A foolproof method. The highly effective scheme used by libraries raises the
interesting question of whether it is possible to devise a method that will detect all
single errors and all transposition errors with a single check digit. Actually, the
ISBN method achieves this [7]. But it does so in an artificial way by using the
character X to represent the possible check number of 10, which consists of twe
characters. (The method involves modulo 11 arithmetic.)

Recently Gumm [3], [4] has discovered a group theoretical method that uses a
single check digit and is 100% effective in detecting single errors and transposition
erros. To describe this method we need the dihedral group of order 10, D,
represented in the form shown in TABLE 1, and the permutation o =
(0)(14)(23)(58697). To append a check digit to any string of digits we “weight” the
digits with powers of ¢ and, using TABLE 1, multiply them and take the inverse of
the product. For example, consider 1793. The check digit is

(04(1)*03(7)#02(9)*0(3))~1 = (1+6+5+2)" ' =4"1=1,
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For 17326, we obtain the check digit
(a3(1)x 0%(7)+ 0?(3) + 62(2) % 0(6)) "' = (4+9+2+249) ' =01 = 0.

To see that this scheme detects all single-digit errors we observe that an error-free
number a,a,_, --- a,a, (where a, is the check digit) has the property that

o"(a,)*a" (a,_1)* - *ao(a)*ag=0

and, therefore, any particular factor in this product is uniquely determined by all of
the others. Thus a single-digit error does not result in a product of 0. That all
transposition errors are detected can be verified by showing that for all distinct a
and b, a(a)#*b # a(b)* a. For then, for all i,

o't (a)xai(b) # o'+ (b)*a'(a)
and consequently a transposition will not result in a product of 0.

In addition to being foolproof in detecting single errors and transpositions,
Gumm’s method will detect approximately 90% of all other types of errors.

TasLE 1. The multiplication table of Ds.

. 0 1 2 3 4 5 6 7 8 9
0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 0 6 7 8 9 5
2 2 3 4 0 1 7 8 9 5 6
3 3 4 0 1 2 8 9 5 6 7
4 4 0 1 2 3 9 5 6 7 8
5 5 9 8 7 6 0 4 3 2 1
6 6 5 9 8 7 1 0 4 3 2
7 7 6 5 9 8 2 1 0 4 3
8 ‘8 7 6 5 9 3 2 1 0 4
9 9 8 7 6 5 4 3 2 1 0

For the purpose of comparison, we summarize the calculations given above in
TABLE 2 and average the two rates. However, this average does not represent the
detection rate for either one of a single-digit error or a transposition error unless
these two types of errors are equally likely to occur.

TABLE 2. Summary of error-detection rates.

scheme single error rate transposition error rate average
U.S. Postal Service, VISA 98.0% " 10.0% 54.0%
Airlines, U.P.S. 94.0% 94.1% 94.1%
Chemical 90.3% 98.6% 94.5%
Bank 100% 88.9% 94.5%
Library 100% 97.8% 98.9%
Gumm 100% 100% 100%
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On a Property of x"e™*

GABRIEL KLAMBAUER
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Let f(x) = x"e™* where x > 0 and n > 2. The function f is increasing in the
interval (0, n) and decreasing in (7, c0) and has points of inflection for x = n + Vn.
My colleague Ian Iscoe of the University of Ottawa asked me to find a simple proof
that f(n + Vn) > f(n — Vn). I wish to show here that, more generally, f(n + h) >
f(n —h), where 0 < h < n.

Indeed, the inequalities

(n+h)'e " n+h 2h

——>1 > —
(n—h)"en+h and In n~h n

are equivalent. The latter inequality can be proved as follows. Note that
In{(n + h)/(n - h})}

is the area of the region H below the hyperbola y = 1/x and above the interval
[n — h, n + k] on the x-axis. On the other hand, 2h/n can be interpreted as the
area of the trapezoidal region T below the tangent line to y = 1/x at x = n, the
midpoint of the interval [n — h, n + h], and above the interval [n — h, n + h] on
the x-axis. Observing that y = 1/x is concave upward for x > 0, it is apparent that
the region T is contained in the region H and so the area of T is smaller than the
area of H.

Noncentral Difference Quotients and the Derivative
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We all have proved at one time or another the result that if a function f, defined
on a neighborhood of the origin, is differentiable at the origin, then the central
difference quotients converge, i.e.,

o ()~ f(=h)
h—0 2h
exists and equals f'(0), but that the converse is not true in general, the counterexam-



