Siliciclastic record of rapid denudation in response to convergent-margin orogenesis, Ross Orogen, Antarctica

John W. Goodge*
Department of Geological Sciences, University of Minnesota, Duluth, Minnesota 55812, USA

Paul Myrow
Department of Geology, Colorado College, Colorado Springs, Colorado 80903, USA

David Phillips*
Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia

C. Mark Fanning
Ian S. Williams
Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, Australia

ABSTRACT

Siliciclastic rocks of the upper Byrd Group in the Transantarctic Mountains record rapid denudation and molasse deposition during Ross orogenesis along the early Paleozoic convergent margin of Gondwana. These rocks, which stratigraphically overlie Lower Cambrian Byrd carbonate deposits, are dominated by fresh detritus from proximal igneous and metamorphic sources within the Ross Orogen. Biostratigraphic evidence indicates that deposition of the siliciclastic succession is late Botomian or younger (<515 Ma). The largest modes of U-Pb and ⁴⁰Ar/³⁹Ar ages from detrital zircons and muscovites respectively in the siliciclastic molasse are Early to Middle Cambrian, but based on ages from crosscutting igneous bodies and neoblastic metamorphic phases, deposition of individual molasse units continued until ~490–485 Ma (earliest Ordovician). The entire episode of interrelated tectonic, denudational, sedimentary, deformational, and magmatic events is restricted to a time interval of 7–25 m.y. in the late Early Cambrian to earliest Ordovician, within the resolution of these stratigraphic and geochronologic data. Stratigraphic relationships suggest that the detrital zircon and muscovite in the sediments came from the same source terrain, consistent with large volumes of molasse having been shed into forearc and/or marginal basins at this time, primarily due to erosion of igneous rocks and metamorphic basement of the early Ross magmatic arc. Rapid erosion and unroofing in the axial Ross Orogen is consistent with a sharp carbonate-to-clastic stratigraphic transition observed in the upper Byrd Group, reflecting an outpouring of alluvial fan and fluvial-marine clastic detritus. The short time lag between tectonism and sedimentary response is similar to that determined for the corresponding section of the Ross-Delamerian orogen in South Australia and other continental-margin arc systems, such as in the Mesozoic Peninsular Ranges of California. Mineral cooling ages from metamorphic basement adjacent to the orogen yield a syn- to late-orogenic cooling.

*E-mail, Goodge: jgoodge@d.umn.edu. Current address, Phillips: School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010 Australia.

rate of ~10 °C/m.y., which, combined with a known metamorphic geotherm, indicates a denudation rate of ~0.5 mm/yr. Such denudation rates are comparable to those in recent convergent or collision orogens and suggest that crustal thickening associated with both magmatic intrusion and structural shortening was balanced by near-synchronous erosional exhumation.

Keywords: detrital minerals, zircon, muscovite, thermochronology, Ross Orogen.

INTRODUCTION

Thermochronology is widely used to recover information about cooling histories, metamorphic P-T-t paths, and rates of tectonic displacement. Differences between the ages of minerals with different closure temperatures, as well as mineral systems that record partial thermal resetting, can be used to determine crustal cooling rates. If the regional geothermal gradient is known or can be inferred, it is also possible to estimate the rate of surficial denudation. These methods are commonly applied to igneous and metamorphic rocks in tectonically active settings, sampled from bedrock across tilted crustal sections or in deeply eroded areas of high present-day relief. This approach has some limitations, however, due to the degree of relief and the fact that part of the rock record (thereby, history) has been removed by erosion. An alternative strategy is to determine the ages of detrital minerals eroded from a mountain belt and preserved by accumulation in adjacent sedimentary basins. Detrital mineral chronometers place limits on the age and duration of sedimentation, particularly when biostratigraphic markers are lacking. In some cases they can be used to estimate rates of cooling and/or denudation, if it can be demonstrated that minerals with different closure temperatures were derived from the same source region and that those minerals have not been isotopically disturbed in the surficial and burial environments since initial closure (e.g., Copeland and Harrison, 1990; Garver et al., 1999; Bernet et al., 2001). The latter situation most likely holds in proximal “unroofing” successions where mineral provenance is well established.

We have used detrital muscovite and zircon ages from Cambrian-Ordovician siliciclastic rocks of the central Ross Orogen (Fig. 1A) to evaluate tectonically induced denudation in a convergent-margin setting of Gondwana. Sandstone and conglomerate of the upper Byrd Group (Lower Cambrian to Ordovician) were deposited as forearc molasse sediments in response to structural shortening and continental-marginal magmatism during the main phase of Ross tectonism (Rowell et al., 1988; Rees and Rowell, 1991). The onset of supracontinental deformation is well constrained by biostratigraphic, chemostratigraphic, and geochronological data from the region (Myrow et al., 2002b), and detrital mineral suites in the molasse deposits provide good control on their age and provenance (Goode et al., 2002). Here we summarize previously reported U-Pb detrital zircon ages and report new 40Ar/39Ar detrital muscovite ages from the Byrd Group molasse succession that characterize the age and nature of inputs from the orogenic source region. Sandstone samples were collected for detrital zircon and muscovite analysis from the Starshot and Douglas formations between the Byrd and Beardmore glaciers (Fig. 2), near Cape Selbourne (DIF), Mount Ubique (USF), the Holyoake Range (HSF and DCS), Cambrian Bluff (CBG), Softbed Ridges (SRG) and Dolphin Spur (DSG). We also report new age measurements of crosscutting intrusions and metamorphic mineral assemblages that bracket the duration of molasse sedimentation. Taken together, these data provide a detailed record of interrelated events that followed the first pulse of supracrustal deformation in the region and that reflect rapid denudation in the orogen.

GEOLOGICAL SETTING

East Antarctica is the keystone in most reconstructions of Rodinia and Gondwana. It has a long association with East Gondwana cratonic neighbors in present-day Australia, India, and Africa, which were finally amalgamated along Grenvillian-age sutures during assembly of Rodinia (Fig. 1A). Breakup of Rodinia resulted in formation of a rifted margin along the paleo-Pacific sector of Australia and East Antarctica (Fig. 1B), characterized by passive-margin subsidence, sedimentation in shoreline and shallow shelf settings, and minor volcanism (Laird, 1981, 1991; Stump, 1995; Preiss, 2000). Rifting along the East Antarctic sector may have occurred as early as ca. 750 Ma, but a gabbro from the central Transantarctic Mountains dated by U-Pb zircon as 668 Ma provides a better minimum estimate of rifting age (Goode et al., 2002). Subsequent passive-margin extension and sedimentation continued well into the late Neoproterozoic between ca. 670 and 580 Ma. By the latest Neoproterozoic to Early Cambrian, the rift margin underwent a major tectonic transformation to an active, subducting plate boundary, probably as a result of changes in global plate motions and plate-boundary stresses following initial consolidation of the central Gondwana supercontinent (Flöttmann et al., 1994; Goode, 1997).

In Antarctica, the convergent margin consisted of a continental-margin magmatic arc (Borg et al., 1987, 1990; Armienti et al., 1990; Allibone et al., 1993; Rocchi et al., 1997) constructed upon Archean-Proterozoic basement (Fig. 1C), with sinistral-oblique underflow interpreted from Ross-age basement structures (Goode et al., 1993a). Calc-alkaline magmatism indicates that subduction was initiated by at least 530 Ma (e.g., Cox et al., 2000; Allibone and Wysockanski, 2002). Detrital zircon geochronology from lower Paleozoic rocks containing arc-derived detritus suggests that volumetrically significant magmatism occurred as early as ca. 580 Ma (Ireland et al., 1998; Goode et al., 2002). Tectonism attributed to the Ross Orogeny is expressed by structural shortening of upper Neoproterozoic marginal-basin
strata and platform carbonates of Early Cambrian age. Middle Early Cambrian to Ordovician molasse deposits of the upper Byrd Group, the subject of this paper, appear to represent alluvial-fluvial to shallow-marine siliciclastic deposits derived from the eroding Ross Orogen (Rees and Rowell, 1991; Myrow et al., 2002a). As shown in Figure 1C, these deposits are interpreted as marginal-marine and forearc-basin sediments on the basis of paleocurrent and sedimentary facies data. There may have been a corresponding foreland basin in a retroarc setting, but if it existed, the deposits would now be covered by the modern ice cap.

In the central Transantarctic Mountains (Fig. 2), siliciclastic rocks of the upper Byrd Group lie east (or outboard in present coordinates) of high-grade metamorphic and igneous rocks of the Nimrod Group, representing East Antarctic shield basement and low-grade sedimentary rocks of the passive margin. The latter include late Neoproterozoic siliciclastic rocks of the Beardmore Group (following Goodge et al., 2002) and Early Cambrian carbonate strata of the lower Byrd Group (Fig. 3). The Beardmore Group deposits include quartz wacke, quartzite, carbonate grainstone, shale, diamictite, and minor mafic volcanic rocks.

The Shackleton Limestone of the lower Byrd Group includes a thick basal quartz arenite unit. Siliciclastic rocks of middle Early Cambrian or younger age (Holyoake, Starshot, and Douglas formations of the upper Byrd Group) abruptly overlie the older passive-margin units (Myrow et al., 2002b). These rocks successively overlap the terminal Lower Cambrian carbonate platform deposits of the Shackleton Limestone and reflect tectonic drowning of the formerly quiescent platform during the early stages of Ross convergence. Faunal ages in the Holyoake and lower Starshot formations (lower part of the upper Byrd Group) date the inception of siliciclastic deposition as ca. 515 Ma (Myrow et al., 2002b). The bulk of the upper Byrd Group consists of proximal conglomerate and more distal sandstone, the latter being mainly immature feldspathic arenite and wacke associated with shale, argillite, and pebble conglomerate. Although difficult to distinguish from the older clastic rocks in the field, they are distinctive in composition, being notably rich in feldspar and detrital mica. Paleocurrent data, paleoslope data, sedimentary facies relationships, clast compositions, and detrital zircon ages from the upper Byrd units all suggest derivation and transport from igneous and...
metamorphic sources to the west in present-day coordinates (Myrow et al., 2002a, 2002b; Goodge et al., 2002). Syn- to post-tectonic igneous rocks of the Granite Harbour intrusive series, emplaced between ca. 540 and 480 Ma (Borg et al., 1990; Goodge et al., 1993b), intrude all units in the region.

The middle Early Cambrian to Ordovician upper Byrd Group, interpreted as forearc molasse deposits based on their sedimentary facies, detrital zircon characteristics, and position with respect to the magmatic arc (Goodge et al., 2002), therefore represents detritus derived from structurally thickened parts of the orogenic belt. These molasse units were derived in part from older metasedimentary rock units that were later thrust over them (Fig. 4). The molasse is a significant proportion of exposed rock in the present-day orogen, and it is itself deformed by open, upright structures and intruded by late-stage granitoids (Fig. 5).

Before the age and duration of denudation related to molasse deposition can be addressed using detrital mineral thermochronometry, it must be established that the minerals were eroded from the same source rock or from the same crustal level (Garver et al., 1999; Bernet et al., 2001). Evidence that zircon and muscovite in the upper Byrd Group molasse succession were derived from the same proximal sources includes the following: (a) the Starshot and Douglas formations are proximal deposits, based on their alluvial fan and marginal-marine sedimentary facies, immature compositions, degree of grain angularity, and preservation of pristine zircon crystals and coarse detrital muscovite
grains, which all suggest short transport distance; (b) the presence of limestone clasts and crystalline calcite grains in some Starshot beds, in addition to igneous and quartzite clasts, suggesting that the Shackleton Limestone and local basement rocks were eroded; (c) the Starshot appears to have a chiefly intra-arc source, based on paleocurrents, sediment composition, zircon growth and radiogenic isotope characteristics, and trace minerals such as tourmaline (a distinctive accessory mineral in Ross-age igneous rocks of the region); and (d) the deposits immediately overlie autochthonous carbonate, suggesting that they are not far-traveled. If the detrital zircon and muscovite in the Starshot strata indeed share a common source, they can provide first-order constraints on the duration of denudation and sedimentation.

ANALYTICAL METHODS

40Ar/39Ar Methods

Analytical procedures followed those described by McDougall and Feibel (1999). Muscovite and biotite mineral separates were prepared using standard crushing, desliming, heavy liquid, and paramagnetic techniques. Chips (0.5–1.0 mm) from two slate samples (CBGs1 and CBGs2) and ~30 detrital muscovite grains, from each of sandstone samples SRGm, CBGm, DSGm and USFm, were handpicked for 40Ar/39Ar analyses. The samples were ultrasonically cleaned in deionized water and acetone prior to submission for irradiation. All samples were wrapped in aluminum packets and placed in an aluminum irradiation canister together with interspersed aliquots of the flux monitor GA1550 biotite (age = 98.8 ± 0.5 Ma; Renne et al., 1998). Packets containing degassed potassium glass were placed at either end of the canister to monitor the 40Ar production from potassium. The irradiation canister was irradiated for 504 hours in position X33 of the HIFAR reactor, Lucas Heights, Sydney. After irradiation, the samples were removed from their packaging and individual muscovite grains were loaded into 2-mm-diameter holes in a copper sample holder. After bake-out, single muscovite grains were fused using an argon-ion laser beam. Approximately 0.5 mg aliquots of biotite and ~1.0 mg of slate chips were wrapped in tinfoil, baked overnight, and step-heated in tantalum
Siliciclastic record of rapid denudation

Cambrian Bluff area, Antarctica

Figure 4. Outcrop photo mosaic of the eastern Cambrian Bluff area, southern Holyoake Range, showing older-over-younger structural relationship between Shackleton Limestone carbonate and Starshot Formation siliciclastic rocks. Massive outcrops to the west contain fault panels of different lithofacies in the Shackleton Limestone. Dark outcrops to the east are underlain by shale, argillite, sandstone, and diamictite of the Starshot Formation (formerly mapped as Goldie Formation; Laird et al., 1971). Line drawing shows interpretation of structures based on field, petrofabric, and age relationships. View to the north. Outcrop is ~800 m high. Samples CBG and 98-242 collected farther east of this outcrop area.

Figure 5. Schematic geologic cross sections of the Ross Orogen in the Nimrod Glacier area of the Transantarctic Mountains (see Fig. 2). Sections are approximately to scale with no vertical exaggeration. Molasse deposits of the Starshot Formation in the Holyoake, Nash, and Queen Elizabeth ranges are overridden by older (Early Cambrian) carbonate of the Shackleton Limestone, yet contain clasts of the carbonate as well as quartzitic material that was probably derived from crystalline basement and marginal-basin deposits presently exposed to the west.
resistance furnaces. $^{40}\text{Ar}/^{39}\text{Ar}$ analyses of muscovite and biotite samples were carried out at the Australian National University, whereas the two slate samples were analyzed at the University of Melbourne; all analyses were carried out on VG3600 mass spectrometers. Mass discrimination was monitored by analyses of standard air volumes. Correction factors for interfering reactions are as follows and apply to both labs: ($^{39}\text{Ar}/^{37}\text{Ar}$)$_{ca}$ = 3.20 $(\pm 0.02) \times 10^{-4}$, ($^{39}\text{Ar}/^{37}\text{Ar}$)$_{cs}$ = 7.54 $(\pm 0.5) \times 10^{-4}$ (Tetley et al., 1980); ($^{40}\text{Ar}/^{39}\text{Ar}$)$_{c}$ = 0.035 (± 0.005). K/Ca ratios were determined from the ANU laboratory hornblende standard 77-600 and were calculated as follows: K/Ca = 1.90 $\times 39\text{Ar}/^{37}\text{Ar}$. The reported data have been corrected for system backgrounds, mass discrimination, and radioactive decay. The $^{40}\text{Ar}/^{39}\text{Ar}$ ratios and ages have also been corrected for fluence gradients and atmospheric contamination. Errors associated with the age determinations are 1σ uncertainties and exclude errors in the J-value estimates. The error on the J-value is ±0.3%, excluding the uncertainty in the age of GA1550. Decay constants are those of Steiger and Jäger (1977). McDougall and Harrison (1999) describe the $^{40}\text{Ar}/^{39}\text{Ar}$ dating technique in detail.

U-Pb Methods

Detrital zircon procedures followed those described by Goedde et al. (2002). Heavy mineral concentrates of igneous zircon from the granitoids discussed here were prepared using standard crushing, desliming, heavy liquid, and paramagnetic techniques. Zircons were handpicked from the mineral concentrates, mounted in epoxy together with chips of the FC1 and SL13 reference zircons, sectioned approximately in half, and polished. Reflected and transmitted light photomicrographs and cathodoluminescence (CL) scanning electron microscope (SEM) images were prepared for all zircons. The CL images were used to decipher the internal structures of the sectioned grains and to target specific areas within the zircons for analysis. U-Pb analyses of zircons in the two igneous samples were made using sensitive high-resolution ion microprobe (SHRIMP) II at the National Institute for Polar Research, Tokyo. The analyses consisted of 6 scans through the mass range, and data were reduced in a manner similar to that described by Williams (1998, and references therein) using the SQUID Excel macro of Ludwig (2000). The Pb/U ratios are normalized relative to a value of 0.1859 for the $^{206}\text{Pb}/^{238}\text{U}$ ratio of the FC1 reference zircons, equivalent to an age of 1099 Ma (see Paces and Miller, 1993). Uncertainties given for individual analyses (ratios and ages) are at the 1σ level; however, the uncertainties in calculated weighted mean $^{206}\text{Pb}/^{238}\text{U}$ ages are reported as 95% confidence limits, including the uncertainty in the U-Pb calibration of the reference zircon. Tera-Wasserburg concordia plots, relative probability plots with stacked histograms, and weighted mean $^{206}\text{Pb}/^{238}\text{U}$ ages were prepared using ISOPLOT/EX (Ludwig, 1999).

DETRITAL MINERAL AGES

Results of detrital zircon and muscovite analyses from Starshot and Douglas samples are summarized in Table 1. Here we discuss existing U-Pb age data for detrital zircons and present new $^{40}\text{Ar}/^{39}\text{Ar}$ ages for detrital muscovites.

U-Pb Ages of Detrital Zircon

Detrital zircons were analyzed from 12 samples of sandstone from the central Ross Orogen that represent units deposited during the passive- to convergent-margin transition in Neoproterozoic to Ordovician time (Goodge et al., 2002; Goodge et al., 2004). This tectonic transition is well represented by the zircon age distributions, which show distinctive shifts in sedimentary provenance and depositional age. Late Neoproterozoic to Early Cambrian passive-margin and platform units of the Beardmore and lower Byrd groups, stages I and II in Figure 6, contain only Precambrian zircon. Although depositional ages are not precisely known for the passive-margin siliciclastic units, samples inferred

<table>
<thead>
<tr>
<th>Area/stratigraphic unit</th>
<th>Sample No.</th>
<th>Youngest muscovite grains (Ma)1</th>
<th>Youngest zircon grains (Ma)2</th>
<th>Maximum depositional age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byrd-Nimrod-Beardmore glaciers area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starshot Formation, Cape Selbourne*</td>
<td>DIF</td>
<td>501 ± 9 (5)</td>
<td>501 ± 5 (11)</td>
<td>Late Cambrian</td>
</tr>
<tr>
<td>Starshot Formation, Mount Ubique</td>
<td>USF</td>
<td>504 ± 3 (9)</td>
<td>501 ± 5 (11)</td>
<td>Late Cambrian</td>
</tr>
<tr>
<td>Douglas Conglomerate, Hohloa Range</td>
<td>DCS</td>
<td>506 ± 6 (5)</td>
<td>506 ± 6 (5)</td>
<td>Middle Cambrian</td>
</tr>
<tr>
<td>Starshot Formation, Cambrian Bluff*</td>
<td>CBG</td>
<td>510 ± 3 (4)</td>
<td>510 ± 3 (4)</td>
<td>Middle Cambrian</td>
</tr>
<tr>
<td>Starshot Formation, Hohloa Range</td>
<td>HSF</td>
<td>518 ± 4 (6)</td>
<td>513 ± 4 (4)</td>
<td>Middle Early Cambrian</td>
</tr>
<tr>
<td>Starshot Formation, Softfide Ridges*</td>
<td>SRG</td>
<td>516 ± 5 (6)</td>
<td>547 ± 12 (4)</td>
<td>Middle Early Cambrian</td>
</tr>
<tr>
<td>Starshot Formation, Dolphin Spur*</td>
<td>DSG</td>
<td>516 ± 5 (6)</td>
<td>547 ± 12 (4)</td>
<td>Middle Early Cambrian</td>
</tr>
</tbody>
</table>

1 Units originally mapped as Goidle or Dick formation, now included in Starshot Formation (Myrow et al., 2002b).

2 Weighted average of youngest discrete muscovite grain population; number of grains in parentheses.

3 Complete zircon data presented by Goedde et al. (2002) and Goedde et al. (2004). Ages represent weighted average of youngest discrete zircon grain population; number of grains in parentheses.
to come from stratigraphically lower units contain only Archean and Paleoproterozoic components (PAS and CBF), whereas they are succeeded by units dominated by Mesoproterozoic components, with increasing input of Grenville-orogen age (PAC, CPG, SLB). These age distributions are interpreted as the signature of a cratonic provenance, probably from the East Antarctic shield or adjacent cratonic areas (Goodge et al., 2002).

Siliciclastic deposits of the upper Byrd Group are regarded as syn- to late-tectonic in origin and show markedly different detrital zircon signatures compared to the older units (stages III and IV, Fig. 6). The age distributions of these younger sandstone deposits are simpler and dominated by a composite Ross age component ranging from ca. 600 to 500 Ma (HSF, SRG, DSG, DCS). The two youngest samples (USF, DIF) also contain significant amounts of first-cycle Precambrian material, including contributions from Grenville-age (ca. 995, 1035, 1080, 1130, and 1225 Ma) and older (ca. 3.1–3.0, 2.8, and 2.5 Ga) sources. Despite the dominant Ross signature, the Grenville-type and older cratonic ages indicate either that sediment deposition occurred close to exposures of cratonic basement or that it represents deep basement erosion. The morphology, growth zoning, and isotopic compositions of the young Ross-age zircons indicate mostly an igneous origin, which we interpret as the product of erosion from a continental-margin magmatic arc that developed during the main stage of the Ross Orogeny (Fig. 1C; Goodge et al., 2002). The general age distribution in the youngest samples is quite similar to that in Ordovician sandstone units of eastern Australia (Williams, 1998; Ireland et al., 1998), New Zealand (Ireland and Gibson, 1998), and South Africa (Armstrong et al., 1998) and may indicate the widespread distribution of sediments from a common source terrain along the Pacific margin of Gondwana during late Ross and Delamerian time (Williams et al., 2002).

In addition to source information, the detrital zircon ages from the upper Byrd sandstone units also confirm biostratigraphically constrained depositional ages. The youngest discrete detrital subpopulations in the Byrd Group units (ca. 550–500 Ma; Table 1) indicate maximum depositional ages between Early and Late Cambrian, consistent with the Botomian age for onset of siliciclastic deposition indicated by trilobites in the lower Starshot Formation. Radiometric dates on granitoid intrusions in the region also constrain deposition to be no younger than Early Ordovician. Detrital muscovite data, discussed below, help to further constrain the depositional ages for some of the samples.

Figure 6. Summary of detrital zircon results from Beardmore and Byrd group sandstone (Goodge et al., 2002; Goodge et al., 2004), presented as relative probability histograms. Tectonic stages I–IV as in Figure 3, and detrital age results shown in order of relative depositional age based on biostratigraphic control and the youngest zircon grain populations. Provenance changes as follows: (I) passive-margin stage, characterized by Archean and Mesoproterozoic cratonic provenance; (II) platform stage, with mixed carbonate and siliciclastic deposition, the latter dominated by Mesoproterozoic and Grenville-age sources; (III) synorogenic stage, marked by near complete absence of cratonic and older orogenic (Grenville) signatures, and dominated by proximal, young material from the youthful Ross orogen; and (IV) late orogenic stage, showing the youngest detrital components with a Ross provenance, but also minor influx of older cratonic material. Samples as labeled in Figure 3. Original sources of age data as follows: 1—Goodge et al. (2002); 2—Goodge et al. (2004).

Figure 6. Summary of detrital zircon results from Beardmore and Byrd group sandstone (Goodge et al., 2002; Goodge et al., 2004), presented as relative probability histograms. Tectonic stages I–IV as in Figure 3, and detrital age results shown in order of relative depositional age based on biostratigraphic control and the youngest zircon grain populations. Provenance changes as follows: (I) passive-margin stage, characterized by Archean and Mesoproterozoic cratonic provenance; (II) platform stage, with mixed carbonate and siliciclastic deposition, the latter dominated by Mesoproterozoic and Grenville-age sources; (III) synorogenic stage, marked by near complete absence of cratonic and older orogenic (Grenville) signatures, and dominated by proximal, young material from the youthful Ross orogen; and (IV) late orogenic stage, showing the youngest detrital components with a Ross provenance, but also minor influx of older cratonic material. Samples as labeled in Figure 3. Original sources of age data as follows: 1—Goodge et al. (2002); 2—Goodge et al. (2004).

40Ar/39Ar Ages of Detrital Muscovite

40Ar/39Ar ages were measured on individual detrital muscovite grains from four sandstone samples of the upper Byrd Group. All were from the Starshot Formation (Table 1), although three (SRGm, CBGm, and DSGm) were collected from exposures originally mapped as Goldie Formation (Laird et al., 1971; Oliver, 1972). Detrital zircon age data (Goodge et al., 2002; Goodge et al., 2004) are available for samples SRGm, DSGm, and USFm. Detrital muscovite was distinguished from neoblastic muscovite
primarily by its size and shape. The grains are coarse (up to 1 mm) flakes similar in size to framework grains of quartz and feldspar, they have high aspect ratios (mostly 10:1 or greater), and they are typically bent or kinked where in contact with framework grains (Fig. 7A). Neoblastic metamorphic minerals, including muscovite, chlorite, and biotite, are finer grained and texturally distinctive (Fig. 7B). Single-grain 40Ar/39Ar fusion ages were obtained for 12–14 detrital muscovites from each sample using an Ar-ion laser. Analytical data are listed in Table 2 and the ages illustrated in Figure 8.

Sample SRGm was collected from the Lowery Glacier-Soft-bed Ridges area (Fig. 2). It is a fine to medium-grained (0.1–0.5 mm), feldspathic graywacke containing angular grains of quartz, plagioclase, muscovite, and lithic grains (slate and polycrystalline quartz), indicating a source composed of crystalline basement and low-grade metasedimentary rocks. Fourteen detrital muscovite grains yielded ages ranging from ca. 584 to 490 Ma (Fig. 8A), with two grains (1 and 11) much older than the rest (561 ± 3 Ma and 584 ± 12 Ma, respectively). The weighted mean age of the 12 younger grains is 507 ± 7 Ma, but there is considerable scatter beyond analytical error ($\chi^2 = 23.7$). This population is bimodal, with six grains yielding a weighted mean age of 497 ± 4 Ma ($\chi^2 = 3.1$) and the other six a weighted mean age of 518 ± 4 Ma ($\chi^2 = 2.5$). The mean age of the youngest grains in sample SRGm is indistinguishable from that of a nearby intrusion (see below), but the presence of some distinctly older grains suggests a maximum depositional age of 518 ± 4 Ma. If correct, this indicates that the sample has a middle Early Cambrian or younger depositional age, consistent with the less precise age limit of 531 ± 8 Ma provided by the youngest detrital zircons (Table 1).

Sample CBGm is a feldspathic arenite from the northeast end of Cambrian Bluff in the southern Holyoake Range (Fig. 2). It was collected immediately north of Nimrod Glacier and ~1 km west of the Errant Glacier confluence from prominent outcrops characterized by thick tabular beds of feldspathic wacke and shale. The sample is a medium-grained (0.5–1.0 mm) arenite containing angular to sub-angular quartz, plagioclase, K-feldspar, and muscovite, with minor biotite, tourmaline, sphene, and crystalline calcite. Lithic grains include biotite-rich quartzite, fine-grained quartzite, coarse polycrystalline quartz, myrmekitic quartz, quartz–muscovite schist, matrix-supported wacke, slate, and crenulated slate. The composition and texture of the grains indicate a proximal source that includes granite, metasedimentary rocks, limestone, and older siliciclastic rocks. Eleven muscovite grains yielded ages ranging from ~515 to 480 Ma (Fig. 8B), with a weighted mean age of 502 ± 8 Ma, but significant scatter ($\chi^2 = 7.8$). One other grain (2) with a small 39Ar release, low radiogenic 40Ar content, and a high Ca/K ratio yielded an imprecise age of 369 ± 143 Ma, likely due to alteration and/or contamination effects. This result is excluded from the population and is not shown on Figure 8. As in sample SRGm, the ages are bimodal, with seven grains yielding a weighted mean age of 486 ± 4 Ma (excluding grain 2) and four a weighted mean age of 510 ± 3 Ma. The former muscovite ages are younger than a crosscutting intrusion and probably reflect partial resetting of older detrital grains. If argon loss is minimal in the four oldest grains, then they indicate a Middle Cambrian or younger depositional age. This sample was not included in the detrital zircon study.

Sample DSGm was collected from an exposure of thin-bedded sandstone and shale near the crest of Dolphin Spur, ~12 km east of Beardmore Glacier and Mount Patrick (Fig. 2). These rocks show trough cross-beds, thin graded channel deposits, desiccation cracks, and small (~1 cm) burrows, indicating a shallow marine depositional setting. The sample is a fine-grained (≤0.5 mm) quartz graywacke containing quartz, plagioclase, muscovite, and lithics (polycrystalline quartz, slate, and muscovite schist), with minor Fe-Ti–oxide and tourmaline. Eleven
<table>
<thead>
<tr>
<th>Grain no.</th>
<th>Analysis type</th>
<th>Mineral</th>
<th>Cum. % Ar</th>
<th>40Ar/Ar</th>
<th>39Ar/Ar</th>
<th>39Ar/Ar</th>
<th>40Ar/Ar</th>
<th>Vol. % Ar</th>
<th>39Ar</th>
<th>Ca/K</th>
<th>40Ar/Ar</th>
<th>Age (Ma)</th>
<th>± 1 s.d. (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>39.02</td>
<td>0.0158</td>
<td>0.0012</td>
<td>0.3685</td>
<td>99.0</td>
<td>0.0299</td>
<td>38.65</td>
<td>561.0</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>33.88</td>
<td>0.0040</td>
<td>0.0017</td>
<td>0.2227</td>
<td>98.5</td>
<td>0.0077</td>
<td>33.37</td>
<td>493.9</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>33.67</td>
<td>0.0000</td>
<td>0.0007</td>
<td>1.0640</td>
<td>99.2</td>
<td>0.0051</td>
<td>33.45</td>
<td>495.0</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>35.64</td>
<td>0.0001</td>
<td>0.0008</td>
<td>0.6204</td>
<td>99.2</td>
<td>0.0002</td>
<td>35.36</td>
<td>519.6</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>36.00</td>
<td>0.0038</td>
<td>0.0009</td>
<td>0.0508</td>
<td>99.2</td>
<td>0.1780</td>
<td>35.73</td>
<td>524.2</td>
<td>11.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>34.33</td>
<td>0.0067</td>
<td>0.0004</td>
<td>0.1035</td>
<td>99.5</td>
<td>0.0696</td>
<td>34.17</td>
<td>504.2</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>35.57</td>
<td>0.0048</td>
<td>0.0030</td>
<td>0.4088</td>
<td>97.4</td>
<td>0.0092</td>
<td>34.65</td>
<td>510.5</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>35.24</td>
<td>0.0003</td>
<td>0.0001</td>
<td>1.4135</td>
<td>99.6</td>
<td>0.0006</td>
<td>35.10</td>
<td>516.2</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>33.97</td>
<td>0.0039</td>
<td>0.0001</td>
<td>0.8374</td>
<td>99.8</td>
<td>0.0075</td>
<td>33.93</td>
<td>501.2</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>35.65</td>
<td>0.0001</td>
<td>0.0006</td>
<td>1.7040</td>
<td>99.4</td>
<td>0.0001</td>
<td>35.44</td>
<td>520.6</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>40.76</td>
<td>0.0055</td>
<td>0.0009</td>
<td>0.0671</td>
<td>99.3</td>
<td>0.0105</td>
<td>40.47</td>
<td>583.7</td>
<td>11.9</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>33.64</td>
<td>0.0014</td>
<td>0.0017</td>
<td>0.5176</td>
<td>98.4</td>
<td>0.0027</td>
<td>33.10</td>
<td>490.5</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>34.53</td>
<td>0.0010</td>
<td>0.0038</td>
<td>0.0827</td>
<td>96.7</td>
<td>0.0018</td>
<td>33.39</td>
<td>494.2</td>
<td>14.7</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>35.28</td>
<td>0.0007</td>
<td>0.0004</td>
<td>0.8056</td>
<td>99.6</td>
<td>0.0014</td>
<td>35.12</td>
<td>516.5</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>34.68</td>
<td>0.0080</td>
<td>0.0005</td>
<td>0.2233</td>
<td>99.4</td>
<td>0.0152</td>
<td>34.49</td>
<td>507.9</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>34.20</td>
<td>0.0125</td>
<td>0.0024</td>
<td>0.1488</td>
<td>97.8</td>
<td>0.0028</td>
<td>33.47</td>
<td>494.8</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>54.69</td>
<td>0.0356</td>
<td>0.0046</td>
<td>0.0023</td>
<td>75.3</td>
<td>0.0677</td>
<td>41.20</td>
<td>597.2</td>
<td>540.6</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>35.15</td>
<td>0.0078</td>
<td>0.0012</td>
<td>0.6344</td>
<td>98.9</td>
<td>0.1350</td>
<td>34.78</td>
<td>516.2</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>35.32</td>
<td>0.0003</td>
<td>0.0006</td>
<td>0.3199</td>
<td>99.4</td>
<td>0.0005</td>
<td>35.10</td>
<td>520.3</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>37.81</td>
<td>0.0190</td>
<td>0.0070</td>
<td>0.1257</td>
<td>94.5</td>
<td>0.0362</td>
<td>35.72</td>
<td>528.4</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>37.32</td>
<td>0.0185</td>
<td>0.0010</td>
<td>0.2181</td>
<td>99.1</td>
<td>0.0351</td>
<td>36.99</td>
<td>544.5</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>36.34</td>
<td>0.0083</td>
<td>0.0016</td>
<td>0.4852</td>
<td>98.6</td>
<td>0.0537</td>
<td>35.82</td>
<td>529.6</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>36.31</td>
<td>0.0059</td>
<td>0.0010</td>
<td>0.0630</td>
<td>99.1</td>
<td>0.0113</td>
<td>35.97</td>
<td>531.5</td>
<td>12.7</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>36.29</td>
<td>0.0067</td>
<td>0.0043</td>
<td>0.0468</td>
<td>98.4</td>
<td>0.1530</td>
<td>34.98</td>
<td>518.9</td>
<td>22.1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>34.21</td>
<td>0.0080</td>
<td>0.0016</td>
<td>0.1737</td>
<td>99.5</td>
<td>0.0151</td>
<td>33.70</td>
<td>502.2</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>34.39</td>
<td>0.0019</td>
<td>0.0025</td>
<td>0.1386</td>
<td>97.8</td>
<td>0.0416</td>
<td>33.62</td>
<td>501.2</td>
<td>8.1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>36.09</td>
<td>0.0078</td>
<td>0.0003</td>
<td>0.2000</td>
<td>99.7</td>
<td>0.0149</td>
<td>35.98</td>
<td>531.7</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Fusion</td>
<td>Muscovite</td>
<td>1.000</td>
<td>35.86</td>
<td>0.0024</td>
<td>0.0028</td>
<td>0.3104</td>
<td>97.6</td>
<td>0.0074</td>
<td>35.02</td>
<td>519.3</td>
<td>5.2</td>
<td></td>
</tr>
</tbody>
</table>

Note: 1. Isotopic ratios are corrected for mass spectrometer backgrounds, mass discrimination and radioactive decay. 2. J-values are based on an age of 98.8 Ma for the GA1550 biotite monitor. 3. Errors are 1σ uncertainties and exclude the error in the J-value. 4. Correction factors: (40Ar/Ar)Ca = 3.5E-4; (40Ar/Ar)Ca = 7.6E-4; (40Ar/Ar)K = 0.035; I40K = 5.543E-10.
muscovite grains yielded ages ranging from ~545 to 501 Ma (Fig. 8C), with a weighted mean age of 521 ± 6 Ma, but significant scatter ($\chi^2 = 4.6$). One other grain (1) produced little 39Ar, low radiogenic 40Ar, and yielded an imprecise age of 597 ± 541 Ma, attributed to alteration or contamination. It is excluded from the population and is not shown on Figure 8. As in the other samples, the mica ages are bimodal, but both peaks are substantially older than 500 Ma: five grains yielded a weighted mean age of 532 ± 8 and six grains an age of 516 ± 5 Ma. These results are compatible with other age constraints and there is no clear evidence of thermal overprinting. Assuming minimal argon loss, the younger group places the tightest constraint on the time of deposition, indicating a middle Early Cambrian or younger age. This is consistent with the older limit provided by detrital zircon (Table 1); excluding two grains that have probably lost Pb, the youngest detrital zircon subpopulation has an age of 547 ± 12 Ma (Goodge et al., 2002).

Sample USFm was collected from the Starshot Formation near Mount Ubique (Fig. 2). The formation here contains shale and tabular interbeds of sandstone with sedimentary structures that indicate shallow-water, wave-modified turbidity currents (Myrow et al., 2002a). Sample USFm, from an ~1 m thick massive sandstone bed, contains angular to subrounded quartz and feldspar (mostly plagioclase) with minor muscovite, biotite, tourmaline, crystalline calcite, and lithic grains (fine-grained quartz-muscovite schist). Thin, abraded muscovite flakes and

Figure 8. Single-grain 40Ar/39Ar laser probe fusion ages of detrital muscovites in samples of Starshot Formation sandstone. Upper panel for each sample shows individual grain analyses, with the 2σ error of each analysis (see Table 2). Lower panel shows relative probability distribution of all analyses in each sample, with ages of peaks indicated. Vertical gray bar indicates mean age of entire muscovite population, and dashed lines indicate ages of other events documented elsewhere in this paper. DM—detrital muscovite age mean; DZ—detrital zircon age mean; IZ—cross-cutting igneous zircon age; M—metamorphic age from slate or neoblastic biotite. Some analyses in samples CBGm and DSGm had large errors due to alteration or contamination and were excluded (see text).
calcite grains suggest a proximal source. These, along with coarse monocrystalline quartz, plagioclase, and tourmaline, suggest a provenance that includes granite, limestone, and schistose metamorphic rocks. Twelve muscovite grains yielded ages ranging from 524 to 485 Ma (Fig. 8D), with a weighted mean age of 506 ± 7 Ma, but significant scatter ($\chi^2 = 9.4$). Excluding the youngest and two oldest grains, the remaining nine grains have a weighted mean age of 503 ± 3 Ma ($\chi^2 = 1.2$). Assuming minimal argon loss, these grains suggest a late Middle Cambrian or younger depositional age, consistent with the sample’s higher stratigraphic position and the fact that it contains the youngest detrital zircon (501 ± 5 Ma; Table 1).

The similarity in detrital muscovite ages from these four Starshot samples suggests that they are from broadly coeval depositional units, despite minor sedimentary facies differences within the formation. Although there is evidence of argon loss for some detrital muscovites, the consistent presence of ca. 520 to 505 Ma muscovite in the different samples collectively indicates middle Early Cambrian or younger deposition ages (Table 1), in line with faunal ages from the basal part of the upper Byrd Group (ca. 515 Ma).

POST-DEPOSITIONAL AGE CONSTRAINTS

The ages of crosscutting igneous rocks and metamorphic minerals in the Starshot Formation place upper limits on deposition age, thereby constraining the duration of sedimentation.

Crosscutting Intrusions

Two crosscutting igneous intrusions were dated by SHRIMP zircon U-Pb to provide younger limits for the depositional age of the Starshot Formation. In the Softbed Ridges area (SRG in Fig. 2), the Starshot is intruded by medium- to coarse-grained hornblende-pyroxene quartz gabbro. The intrusive is small (<400 m across) with a sharp western contact where the gabbro has a diabasic texture and a gradational eastern contact with hornfelsic sandstone and calc-silicate layers containing veins and apophyses of diabase. The coarser interior phase contains xenoliths of metaarenite and argillite, and it shows no evidence of post-crystalization deformation. Zircon was analyzed from gabbro sample 98-207A, collected near the margin of the intrusion (Table 3). The sample contains coarse, concentrically zoned clinopyroxene

TABLE 3. SUMMARY OF SHRIMP U-PB ZIRCON RESULTS FOR QUARTZ GABBRO SAMPLE 98-207A, SOFTBED RIDGES, ANTARCTICA

<table>
<thead>
<tr>
<th>Grain spot</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
<th>Th/U</th>
<th>$^{208}\text{Pb}^{*}$ (ppm)</th>
<th>$^{206}\text{Pb}^{206}\text{Pb}$</th>
<th>f_{fo}%</th>
<th>Total</th>
<th>Radiogenic</th>
<th>Age (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>1676</td>
<td>1630</td>
<td>0.97</td>
<td>115.6</td>
<td>0.000020</td>
<td>0.06</td>
<td>12.458</td>
<td>0.161</td>
<td>0.0576</td>
</tr>
<tr>
<td>2.1</td>
<td>591</td>
<td>331</td>
<td>0.56</td>
<td>42.0</td>
<td>0.000094</td>
<td>0.14</td>
<td>12.107</td>
<td>0.144</td>
<td>0.0586</td>
</tr>
<tr>
<td>3.1</td>
<td>596</td>
<td>327</td>
<td>0.55</td>
<td>41.6</td>
<td>0.000037</td>
<td>0.05</td>
<td>12.287</td>
<td>0.133</td>
<td>0.0577</td>
</tr>
<tr>
<td>4.1</td>
<td>1689</td>
<td>1792</td>
<td>1.06</td>
<td>119.7</td>
<td>0.000045</td>
<td><0.01</td>
<td>12.116</td>
<td>0.121</td>
<td>0.0575</td>
</tr>
<tr>
<td>5.1</td>
<td>1179</td>
<td>1258</td>
<td>1.07</td>
<td>81.4</td>
<td>—</td>
<td>0.13</td>
<td>12.449</td>
<td>0.141</td>
<td>0.0582</td>
</tr>
<tr>
<td>6.1</td>
<td>1349</td>
<td>1459</td>
<td>1.08</td>
<td>95.2</td>
<td>0.000059</td>
<td>0.06</td>
<td>12.173</td>
<td>0.124</td>
<td>0.0580</td>
</tr>
<tr>
<td>7.1</td>
<td>966</td>
<td>769</td>
<td>0.80</td>
<td>67.2</td>
<td>0.000050</td>
<td><0.01</td>
<td>12.349</td>
<td>0.124</td>
<td>0.0573</td>
</tr>
<tr>
<td>8.1</td>
<td>1107</td>
<td>1051</td>
<td>0.95</td>
<td>78.1</td>
<td>—</td>
<td>0.03</td>
<td>12.174</td>
<td>0.148</td>
<td>0.0577</td>
</tr>
<tr>
<td>9.1</td>
<td>812</td>
<td>721</td>
<td>0.89</td>
<td>56.3</td>
<td>0.000023</td>
<td>0.03</td>
<td>12.387</td>
<td>0.126</td>
<td>0.0575</td>
</tr>
<tr>
<td>10.1</td>
<td>624</td>
<td>325</td>
<td>0.52</td>
<td>42.9</td>
<td>—</td>
<td>0.10</td>
<td>12.490</td>
<td>0.141</td>
<td>0.0579</td>
</tr>
<tr>
<td>11.1</td>
<td>1164</td>
<td>1128</td>
<td>0.97</td>
<td>80.1</td>
<td>—</td>
<td>0.04</td>
<td>12.485</td>
<td>0.125</td>
<td>0.0575</td>
</tr>
<tr>
<td>12.1</td>
<td>1483</td>
<td>1939</td>
<td>1.31</td>
<td>104.6</td>
<td>—</td>
<td><0.01</td>
<td>12.177</td>
<td>0.124</td>
<td>0.0572</td>
</tr>
<tr>
<td>13.1</td>
<td>762</td>
<td>623</td>
<td>0.82</td>
<td>53.8</td>
<td>—</td>
<td>0.04</td>
<td>12.173</td>
<td>0.128</td>
<td>0.0578</td>
</tr>
<tr>
<td>14.1</td>
<td>1757</td>
<td>1390</td>
<td>0.79</td>
<td>123.4</td>
<td>0.000023</td>
<td>0.08</td>
<td>12.233</td>
<td>0.129</td>
<td>0.0581</td>
</tr>
<tr>
<td>15.1</td>
<td>1280</td>
<td>1058</td>
<td>0.83</td>
<td>89.0</td>
<td>0.000050</td>
<td>0.03</td>
<td>12.355</td>
<td>0.124</td>
<td>0.0575</td>
</tr>
<tr>
<td>16.1</td>
<td>550</td>
<td>362</td>
<td>0.66</td>
<td>38.0</td>
<td>0.000001</td>
<td>0.09</td>
<td>12.454</td>
<td>0.129</td>
<td>0.0579</td>
</tr>
</tbody>
</table>

Note: 1. Uncertainties given at the 1σ level; 2. Error in FC1 reference zircon calibration was 0.66% for the analytical session (not included in above errors but required when comparing data from different mounts); 3. f_{fo}% denotes the percentage of ^{208}Pb that is common Pb; 4. Correction for common Pb made using the measured ^{207}U/^{206}Pb and ^{208}Pb/^{206}Pb ratios following Tera and Wasserburg (1972) as outlined in Compston et al. (1992).
mantled by hornblende in a subophitic texture with interstitial quartz and plagioclase. Plagioclase and pyroxene are pervasively altered to calcite, biotite, chlorite, and epidote. The zircons are altered to calcite, biotite, chlorite, and epidote. The zircons are

At the east end of Cambrian Bluff in the southern Holyoake Range (Fig. 2), folded carbonate of the Shackleton Limestone and black shale, argillite, and sandstone of the structurally underlying, but stratigraphically younger, Starshot Formation are intruded by leucocratic granite dikes up to 100 m wide (Fig. 4). The dikes have sharp contacts, fine grain size, light color, and massive texture. Sample 98-242 is from a muscovite-bearing aplite granite dike that crosses black shale and sandstone sampled as CBG. Although internally massive, it becomes platy within ~2 m of its contacts, probably a result of flow while chilling. There is no textural evidence of significant subsolidus deformation, so the dike is interpreted to be post-tectonic. Zircons in the aplite are elongate euhedral crystals. CL images show that the grains have a mostly simple magmatic internal zonation; however, some of the central areas have discordant zoning that suggests an earlier phase of magmatic crystallization. Twenty zircon grains were analyzed for U-Th-Pb (Table 4, Fig. 9B). Their U and Th contents are normal for zircon from an unfractionated granitic rock. One grain (9.1) shows minor inheritance, but the other analyses are mostly concordant within error. They are not uniform in radiogenic $^{206}\text{Pb}/^{238}\text{U}$, but the scatter is low ($\chi^2 = 3.1$). The dispersion is not simply due to Pb loss from one or two grains, but to the fact that the compositions are bimodal, as shown by the histogram in Figure 9B. There is no correlation between apparent age and U, Th, or Th/U. The weighted mean $^{206}\text{Pb}/^{238}\text{U}$ ages of the two populations are 514 ± 5 (n = 12) and 494 ± 5 (n = 8) Ma, respectively, including uncertainty in the Pb/U calibration. Assuming no pervasive Pb loss, the younger population gives the best estimate of the age of emplacement. The older population possibly records an earlier stage of magma genesis. The age of the aplite therefore limits deposition of the Starshot Formation at Cambrian Bluff to no younger than Late Cambrian.

Combined with paleontologic evidence that siliciclastic deposition began at ca. 515 Ma (Myrow et al., 2002b), these igneous ages indicate that the Starshot Formation in the area of the Holyoake and Queen Elizabeth ranges is middle Early Cambrian to Late Cambrian in age. If the aplite sampled is cogenetic with other leucocratic dikes in the Cambrian Bluff outcrop that crosscut both the Shackleton and Starshot rocks, the two formations must also have been juxtaposed prior to ca. 495 Ma.

Metamorphic Slate and Biotite

We determined $^{40}\text{Ar}/^{39}\text{Ar}$ ages for whole-rock slate and metamorphic biotite from samples of the Starshot Formation in order to determine the ages of post-depositional metamorphism and cooling. The $^{40}\text{Ar}/^{39}\text{Ar}$ method can be applied to low-temperature metamorphic rocks such as slates, although sometimes irradiation produces recoil loss and/or redistribution of ^{39}Ar in very fine-grained mineral components, resulting in discordant $^{40}\text{Ar}/^{39}\text{Ar}$ age spectra. We collected two slate samples from the eastern end of Cambrian Bluff (CBG in Fig. 2), where overturned beds of Starshot argillite, sandstone, and black shale show incipient formation of slaty cleavage, indicating lower
Greenschist-facies metamorphism (chlorite- to biotite-zone). Sandstone beds here show convolute bedding, load casts, and ripple-drift cross-beds, as well as graded bedding. Some of the coarse sandstone beds contain quartz granules, clasts of fine-grained quartzite, and black shale clasts. Although we refer to some strata and clasts in sandstone as shale, they have macroscopic parting surfaces indicating incipient slaty or phyllitic mineral growth. Sample CBG1 consists of small, very fine-grained slate clasts (<3 cm) collected from a sandstone bed at the base of the exposure next to Nimrod Glacier. The clasts are interpreted as forming an intraformational conglomerate because they are concentrated within certain beds and oriented generally parallel to the principal composition plane. The chips contain neoblastic muscovite, biotite, and less common chlorite; the phyllosilicates are oriented parallel to compositional layering and elongation of the chips, but small ellipsoidal opaque minerals delineate a grain-shape alignment at a small angle to that foliation, suggesting a component of shear during recrystallization. The results of conventional step-heating analysis of the chips are listed in Table 5; two sets of data were collected, one at the Australian National University and the other at the University of Melbourne. Results of the second set of analyses are shown in Figure 10A. The step-heating data define a discordant, sigmoidal to saddle-shaped age spectrum common in fine-grained recrystallized materials that contain multiple mica components and have undergone minor recoil redistribution and/or loss of 39Ar (e.g., Ferguson and Phillips, 2001). The younger ages obtained at low temperature are probably due to argon loss, and older ages from the high-temperature steps probably come from an older detrital component. The release spectrum includes a five-step intermediate age “plateau” (representing 43% of the 39Ar released) of 492 ± 4 Ma. If the sample has undergone only recoil redistribution of 39Ar, then the age of metamorphism (39Ar, then the age of metamorphism) of 492 ± 4 Ma. If the sample has undergone only recoil redistribution of 39Ar, then the age of metamorphism (39Ar, then the age of metamorphism)
<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>Cum. Ar (x10^11 mol)</th>
<th>Ar/Ar Step-Heating Results for Whole-Rock Samples, Starshot Formation, Upper Byrd Group, Antarctica</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBG1 (98-233C) WR Slate (ANU) Mass = 0.87 mg; J-value = 0.009429 ± 0.000028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>0.0074</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>600</td>
<td>0.0129</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>650</td>
<td>0.0252</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>700</td>
<td>0.0514</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>740</td>
<td>0.0873</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>760</td>
<td>0.1229</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>780</td>
<td>0.1684</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>800</td>
<td>0.2266</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>820</td>
<td>0.2949</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>840</td>
<td>0.3732</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>860</td>
<td>0.4642</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>880</td>
<td>0.5704</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>900</td>
<td>0.6884</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>925</td>
<td>0.8252</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>924</td>
<td>0.9245</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>991</td>
<td>1.2916</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>1300</td>
<td>0.9972</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>1450</td>
<td>1.0000</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>Total</td>
<td>33.49</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>CBG1 (98-233C) WR Slate (UM) Mass = 0.71 mg; J-value = 0.009429 ± 0.000028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>0.1486</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>650</td>
<td>0.2352</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>700</td>
<td>0.3376</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>740</td>
<td>0.4380</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>775</td>
<td>0.5118</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>800</td>
<td>0.5926</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>825</td>
<td>0.6632</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>850</td>
<td>0.7539</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>875</td>
<td>0.8242</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>900</td>
<td>0.8651</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>925</td>
<td>0.9059</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>950</td>
<td>0.9125</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>1000</td>
<td>0.9431</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>1050</td>
<td>0.9652</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>1100</td>
<td>0.9914</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>1300</td>
<td>0.9926</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>1450</td>
<td>1.0000</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>Total</td>
<td>36.679</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>CBG2 (98-238) WR Slate (UM) Mass = 0.79 mg; J-value = 0.009429 ± 0.000028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>0.1332</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>650</td>
<td>0.2612</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>700</td>
<td>0.3545</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>750</td>
<td>0.4962</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>775</td>
<td>0.6057</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>800</td>
<td>0.6968</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>825</td>
<td>0.7770</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>850</td>
<td>0.8468</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>875</td>
<td>0.9011</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>900</td>
<td>0.9380</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>925</td>
<td>0.9635</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>950</td>
<td>0.9744</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>1000</td>
<td>0.9855</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>1050</td>
<td>0.9981</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>1100</td>
<td>0.9986</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>1200</td>
<td>0.9998</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>1300</td>
<td>1.0000</td>
<td>Ar/Ar</td>
</tr>
<tr>
<td>Total</td>
<td>33.33</td>
<td>Ar/Ar</td>
</tr>
</tbody>
</table>

Note: 1. Errors are 1σ uncertainties and exclude uncertainties in the J-value. 2. Data are corrected for mass spectrometer backgrounds, discrimination and radioactive decay. 3. Interference corrections: \((\text{Ar}^4/\text{Ar})_0 = 3.2E-4; \) \((\text{Ar}^6/\text{Ar})_0 = 7.86E-4; \) \((\text{Ar}^8/\text{Ar})_0 = 3.56E-2; \) 4. J-value is based on an age of 98.8 Ma for GA-1550 biotite. 5. Samples analyzed at Australian National University (ANU) and University of Melbourne (UM).
We interpret the age obtained from the slate chips as an in situ metamorphic age because the chips most likely have an origin as shale intraclasts. The age of ca. 490 Ma therefore dates the maximum age of metamorphic recrystallization for CBGs1 during incipient growth of slaty minerals.

Coherent, laminated black shale (sample CBGs2) was collected from an interval of interbedded Starshot shale, sandstone, and shale-matrix diamictite on top of the ridge overlooking Nimrod Glacier at the east end of Cambrian Bluff. The release spectrum from this sample is also sigmoidal (Fig. 10B), with the low-temperature steps reflecting Ar loss and the high-temperature steps affected by outgassing of coarser detrital micas. The age spectrum includes a five-step age plateau (representing 52% of the 39Ar released) with a weighted mean age of 485 ± 4 Ma. Assuming minimal recoil loss of 39Ar, we interpret the age of ca. 485 Ma as approximating the maximum age of metamorphic crystallization. The 40Ar/39Ar ages for slate formation in the Starshot Formation therefore suggest deformation and low-grade metamorphism of these rocks by earliest Ordovician time.

40Ar/39Ar step-heating ages were also determined for neoblastic biotite from two of the Starshot sandstone samples for which detrital minerals were dated, at Softbed Ridges (SRGb) and Cambrian Bluff (CBGb). The results are listed in Table 6 and shown in Figure 11. Sample SRGb yielded a slightly discordant age spectrum (Fig. 11A), but with a plateau age of 488 ± 4 Ma (2σ error). Sample CBGb yielded a plateau age of 481 ± 4 Ma (2σ error).
DISCUSSION

Zircon and Muscovite Provenance

Compared to ages of detrital zircon, the detrital muscovites in the Starshot Formation sandstones are uniformly young (580–480 Ma), indicating a proximal provenance with a dominant young source cooling age. Overlap between the youngest apparent ages of detrital muscovite and crystallization ages of nearby igneous intrusions could be interpreted as indicating thermal overprinting of the younger muscovite grains. However, it has been demonstrated that detrital muscovites remain closed systems for argon diffusion even under mid-greenschist facies conditions (e.g., Dunlap et al., 1991). As there is evidence that some grains have undergone variable alteration (CBGm grain 2; DSGm grain 1), it is more likely that the younger muscovite ages result from minor argon loss (<5%) caused by alteration and/or deformation processes. Omitting the analyses of muscovites that were altered or thermally overprinted yields an age distribution with a major peak at ca. 515 Ma (Fig. 12), composed of discrete subpeaks at 509 ± 3 and 518 ± 2 Ma that were contributed by younger and older grains, respectively. Within a given sample, however, the detrital muscovite cooling ages have a much smaller range. In contrast to detrital zircon, none of the detrital muscovites in the Starshot samples predates igneous and metamorphic rocks associated with the Ross Orogen (≤540 Ma). Further, most of the Ross-age detrital zircon is older than most of the muscovite (Fig. 12). Both minerals have age distributions skewed toward young ages and tailing toward old, but the maxima are offset by ~40 m.y. The difference between the muscovite and zircon age distributions is attributable to several factors: (a) muscovite is less robust mechanically than zircon and has a shorter average lifetime during long-distance transport or recycling (Kowalewski and Rimstidt, 2003); (b) muscovite is less robust chemically than zircon and can be altered by prolonged weathering (Goldich, 1938; Robertson and Eggleton, 1991; Elliott et al., 1997; Kowalewski and Rimstidt, 2003); and (c) muscovite, having a lower closure temperature than zircon, is more susceptible to isotopic resetting. Therefore, erosion of a thermally modified, polyphase metamorphic terrain, such as the nearby Nimrod Group, could yield zircons with a wide range of ages but muscovites with Ar cooling ages that are younger than the last metamorphic event that reset older muscovites or that caused growth of new muscovites (e.g., Goode et al., 1993b; Goodge and Dallmeyer, 1992, 1996; Goodge and Fanning, 1999; Goodge et al., 2001).

A notable observation is that the detrital muscovite ages, within individual samples, are bimodal (Fig. 8). This age bimodality supports the interpretation that there is a mix of variously altered grains within each sample, with the older results representing source ages and the younger ages attributable to alteration-induced argon loss. If all grains had suffered partial Ar loss, a continuum of ages would be expected. Because there are no detrital muscovite grains with ages older than known Ross events, in contrast to detrital zircons, we interpret them as discrete populations of detrital muscovite with a source in the Ross Orogen itself. A tendency to bimodality is also seen in the Ross-age detrital muscovite ages from southern Australia (Turner et al., 1996). Given that muscovite is uncommon as a volcanic phase and that most of the Granite Harbour intrusives contain biotite and/or hornblende, the primary source of detrital muscovite is most likely to be older high-grade metamorphic rocks of the orogen (Nimrod Group or equivalent basement). The presence of minor tourmaline grains in the Starshot and Douglas formations is consistent with the erosion of nearby Granite Harbour plutons, the peraluminous phases of which contain tourmaline (Gunner, 1976; Borg et al. 1990) and pelitic units of the amphibolite-facies Nimrod Group.

Tectonic Implications

Our present understanding of the timing of depositional, deformational, igneous, and metamorphic events pertaining to the upper Byrd Group in the central Transantarctic Mountains is illustrated in Figure 13. Stratigraphic evidence from the Holyoke Range indicates that siliciclastic deposition in response to the onset of Ross deformation commenced ca. 515 Ma (Myrow et al., 2002b). Although supracrustal deformation in the region is diachronous (Rowell et al., 1992; Goodge et al., 1993b; Goodge, 1997; Encarnación et al., 1999), this phase of tectonic
movement, which is biostratigraphically well-constrained, is the earliest documented along the length of the orogen in Antarctica. Detrital mineral ages from throughout the group record molasse deposition over a period of at least 25 m.y. from Botomian to Early Ordovician time. Weighted mean ages of discrete detrital muscovite populations provide the best constraint for maximum depositional age of the Starshot samples that we analyzed, which are estimated to be between ca. 520 and 505 Ma (or middle Early Cambrian to late Middle Cambrian). In other areas of the Transantarctic Mountains, deposition persisted to Early Ordovician (Fig. 13; Goodge et al., 2002). Combining the maximum depositional age of 515 Ma with constraints from crosscutting igneous units (≤508 Ma) and metamorphic cooling ages (≤492 Ma) discussed here yields a maximum period of sedimentation of between 7 and 25 m.y. (Fig. 13). Within the framework allowed by these biostratigraphic and crosscutting age constraints, the unimodal, young populations of detrital zircon and muscovite thus show that there was only a short time interval between formation of the youngest source rocks, regional deformation, and late-orogenic igneous intrusion, suggesting rapid erosion and short transport distances.

Age data from geographically separated areas show that deposition was regionally diachronous and that events were more closely spaced in certain areas. For example, ages of crosscutting igneous units at Softbed Ridges and Cambrian Bluff indicate that deposition of sediment in those areas ended no later than ca. 500 Ma (J.W. Goodge et al., 1994). Similarly, the Softbed Ridges area, detrital muscovite cooling ages and the detrital muscovite ages with the crosscutting age constraints indicate that the Starshot Formation in these two areas is earliest Ordovician or older, yet comparing the mean constraints show that there was only a short time interval between formation of the youngest source rocks, regional deformation, and late-orogenic igneous intrusion, suggesting rapid erosion and short transport distances.

Age data from geographically separated areas show that deposition was regionally diachronous and that events were more closely spaced in certain areas. For example, ages of crosscutting igneous units at Softbed Ridges and Cambrian Bluff indicate that deposition of sediment in those areas ended no later than ca. 500 Ma (J.W. Goodge et al., 1994). Similarly, the Softbed Ridges area, detrital muscovite cooling ages and the detrital muscovite ages with the crosscutting age constraints indicate that the Starshot Formation in these two areas is earliest Ordovician or older, yet comparing the mean constraints show that there was only a short time interval between formation of the youngest source rocks, regional deformation, and late-orogenic igneous intrusion, suggesting rapid erosion and short transport distances.

Note: Errors are 1σ uncertainties and exclude uncertainties in the J-value. 2. Data are corrected for mass spectrometer backgrounds, discrimination and radioactive decay. 3. Interference corrections: \(^{40}\text{Ar}/^{39}\text{Ar})_{\text{lu}} = 3.2\times10^{-4}; \(^{40}\text{Ar}/^{39}\text{Ar})_{\text{lu}} = 7.86\times10^{-4}; \(^{40}\text{Ar}/^{39}\text{Ar})_{\text{lu}} = 3.50\times10^{-2}. 4. J-value is based on an age of 98.8 Ma for GA-1550 biotite.
The age of crosscutting gabbro bodies restrict sedimentation to 6–22 m.y., depending on treatment of uncertainties (Fig. 13). For the Starshot Formation in the area of Cambrian Bluff, the detrital muscovite and aplite dike ages similarly restrict deposition to an 8–24 m.y. period. More data will refine these estimates, but it can already be concluded that individual units within the molasse succession were deposited relatively rapidly.

It appears, therefore, that siliciclastic deposition was triggered soon after the onset of regional deformation and that it occurred in brief pulses over a period of up to 7–25 m.y. Recent studies in the Ross Orogen show that most of the siliciclastic material previously assumed to be Neoproterozoic in age is in fact syn- to late-orogenic (Millar and Storey, 1995; Ireland et al., 1998; Rowell et al., 2001; Goodge et al., 2002). By applying different mineral chronometers, the upper Byrd Group sandstone units document a short time lag of only a few million years between onset of deformation and active erosion. A similar conclusion was reached by Turner et al. (1996), who found that Ar-Ar ages of detrital muscovites in the early Paleozoic flysch of southeastern Australia are indistinguishable from their deposition ages (505–485 Ma), implying that the flysch was deposited at essentially the same time that the sediment source, the Ross-Delamerian orogen, was exhumed, and that exhumation was extremely rapid (5–15 mm/yr).

Rapid sedimentary response to tectonism is well documented in other, younger orogenic belts. In the modern Hima-
laya, detrital zircons obtained from the contemporary Indus River yield fission-track ages of only a few million years (Cerveny et al., 1988). Furthermore, Siwalik Group sandstones in the Himalayas contain zircons that were only a few million years old at the time of deposition, suggesting that high denudation rates were maintained since 18 Ma. Likewise, Early Cretaceous forearc deposits in Baja California reflect rapid unroofing of the Peninsular Ranges batholith and its associated arc basement rocks in a continental-margin setting (Busby et al., 1998; Kimbrough et al., 2001). Here, stratigraphic and geochronological data document denudation rates of ~1 mm/yr that are related to intra-arc deformation and magmatism, which in turn yielded forearc sedimentation rates of 1000 m/m.y. over a 10–15 m.y. period. A short time lag between the age of the principal source rocks in the Peninsular Ranges and the age of deposition implies that erosion and rapid forearc sedimentary accumulation rates were driven by a combination of tectonic and magmatic intra-arc thickening. Similar linkages were inferred for the Sierra Nevada–Great Valley arc-forearc system (Linn et al., 1992).

The detrital mineral ages and the ages of crosscutting or overprinting events limit the exhumation history of the igneous and metamorphic source rocks, as well as subsequent molasse deposition, to a short time period. This suggests rapid denudation rates, which can be evaluated by comparing discordant cooling ages obtained from different mineral chronometers. Although this approach is applicable in some sedimentary systems, in this case we cannot be certain of the specific geological source or crustal level from which the detrital minerals were derived. Regional orogenic cooling rates can be obtained, however, from the adjacent crystalline basement. U-Pb and \(^{40}\)Ar/\(^{39}\)Ar cooling ages from different mineral chronometers in the Nimrod Group yielded a post-kinematic cooling rate of ~10 °C/m.y. for igneous and metamorphic rocks of the middle crust (Goedge and Dallmeyer, 1992, 1996). Using a metamorphic geotherm of ~25 °C/km, this inverts to a denudation rate of ~0.4 mm/yr, comparable in order of magnitude to modern convergent or collision belts (e.g., Harrison et al., 1992). For example, recent exhumation rates of 0.2–1.0 mm/yr are reported from the Himalayan, Alpine, and Andean orogenic belts (Zeitler 1985; Copeland et al., 1987; Burbank and Beck, 1991; Harrison et al., 1992; Gregory-Wodzicki, 2000; Bernet et al., 2001; White et al., 2002). By comparison, exhumation rates of 5–15 mm/yr proposed for the Ross-Delamar her orogen in South Australia (Turner et al., 1996) are extreme. Rapid unroofing in the axial Ross Orogen is consistent with the sharp stratigraphic transition observed within the upper Byrd Group of the Holyoke Range, which reflects severe syntectonic erosion, development of an unconformity on uplifted carbonate, and outpouring of clastic materials into marginal-marine molasse basins (Myrow et al., 2002b).

If we estimated cooling rates using zircon and muscovite as detrital mineral chronometers, we would obtain values on the order of 10–30 °C/m.y., which are similar to cooling rates determined for the Nimrod Group and which imply similar denudation rates using the basement geotherm. If the muscovite ages are partially reset and the detrital sources are actually older, or if the geotherm were cooler, the resulting denudation rates would be even faster. Cooling rates calculated from detrital mineral closure ages are highly dependent on grain-age sampling bias, assumed closure temperature, and determination that the minerals were derived from the same source rocks, among other factors. Having at present only two detrital mineral chronometers of uncertain specific source relationship is therefore insufficient to uniquely define cooling rates, but it is likely that there is a link between the basement and supracrustal successions with respect to uplift, cooling, denudation, and sedimentation. Additional detrital mineral age data (e.g., amphibole, feldspar, apatite, etc.) would provide additional constraints for the inferred denudation rates.

CONCLUSIONS

We argue that siliciclastic rocks of the upper Byrd Group represent a depositional response to rapid denudation in the developing Ross Orogen. These rocks are interpreted as forearc molasse deposits on the basis of their sedimentary structures, composition, transport direction, and provenance. In the context of regional tectonic relationships, they represent an “unroofing” succession, in which igneous and metamorphic rocks of the Ross magmatic arc, as well as older, structurally shortened passive-margin deposits, were erosionally inverted and deposited in forearc marginal basins. The entire episode of interrelated tectonism, denudation, sedimentation, deformation, and magmatism appears to have lasted for a period of 7–25 m.y. in the late Early Cambrian to earliest Ordovician. Along with evidence of left-oblique transpression along the Ross margin (Goodge et al., 1993a), the timing constraints indicate both erosional and tectonic controls on denudation. Because the short lag time between tectonism and sedimentation, as deduced from the available geochronological constraints, indicates a rapid denudational response to the orogenic process, crustal thickening produced by both magmatic intrusion and structural shortening appears to have been balanced in part by erosional exhumation.

ACKNOWLEDGMENTS

Field and laboratory work were supported by the National Science Foundation (OPP-9725426 and OPP-9912081). We thank the ANU Electron Microscopy Unit for assistance with CL imaging, and Shane Paxton, John Mya, and Sally Mussett for their excellent mineral separations. We also thank Keiji Misawa (NIPR) for assistance in collecting the SHRIMP U-Pb data. We are grateful for critical reviews by Matt Heizler and John Miller, who provided helpful insight that reshaped our interpretations.

REFERENCES CITED

Allibone, A.H., Cox, S.C., and Smillie, R.W., 1993, Granitoids of the Dry Val...