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Abstract We examine in detail the relative equilibria in the planar four-vortex prob-
lem where two pairs of vortices have equal strength, that is, Γ1 = Γ2 = 1 and
Γ3 = Γ4 = m where m ∈ R−{0} is a parameter. One main result is that, for m > 0, the
convex configurations all contain a line of symmetry, forming a rhombus or an isosce-
les trapezoid. The rhombus solutions exist for all m but the isosceles trapezoid case
exists only when m is positive. In fact, there exist asymmetric convex configurations
when m < 0. In contrast to the Newtonian four-body problem with two equal pairs
of masses, where the symmetry of all convex central configurations is unproven, the
equations in the vortex case are easier to handle, allowing for a complete classifica-
tion of all solutions. Precise counts on the number and type of solutions (equivalence
classes) for different values of m, as well as a description of some of the bifurca-
tions that occur, are provided. Our techniques involve a combination of analysis, and
modern and computational algebraic geometry.
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1 Introduction

The motion of point vortices in the plane is an old problem in fluid mechanics that
was first given a Hamiltonian formulation by Kirchhoff (1883). This widely used
model provides finite-dimensional approximations to vorticity evolution in fluid dy-
namics. The goal is to track the motion of the point vortices rather than focus on their
internal structure and deformation, a concept analogous to the use of “point masses”
in celestial mechanics. As with the Newtonian n-body problem, an important class
of homographic solutions exist where the configuration is self-similar throughout the
motion. Such solutions are described as stationary by O’Neil (1987), or called vortex
crystals by Aref et al. (2003), and are not limited to just relative equilibria, but also
include equilibria, rigidly translating solutions, and collapse configurations.

A relative equilibrium is a special configuration of vortices that rigidly rotates
about its center of vorticity. In a rotating coordinate system it becomes a rest point,
hence the name. The first and perhaps most well-known example occurs when three
vortices are placed at the vertices of an equilateral triangle. Originally discovered by
Lord Kelvin in 1867 (Lord Kelvin 1867) for identical vortices, the equilateral trian-
gle solution is a relative equilibrium for any choice of vorticities. Many examples,
particularly symmetric configurations, have been discovered and analyzed from a va-
riety of perspectives (see Aref et al. 2003 or Newton 2001 and the references therein
for a good overview on the subject). For example, Aref (2007b) used special “gener-
ating polynomials,” where the vortices are located at the roots of the polynomial, to
study symmetric examples of equal-strength vortices such as nested regular polygons.
Newton and Chamoun (2007) used the singular value decomposition and a Brownian
“ratchet” algorithm to numerically locate several examples of asymmetric stationary
solutions. Recently, Chen et al. (2013) utilized an aggregation model and a mean-field
limit to find stable relative equilibria in the planar n-vortex problem for large values
of n. Other notable approaches include topological methods developed by Palmore
(1982), and later O’Neil (1987), to count or bound the number of solutions, and the
application of BKK theory by Moeckel and Hampton (2009) to prove finiteness and
obtain upper bounds for the number of relative equilibria in the four-vortex problem.

In this paper we use techniques from modern and computational algebraic ge-
ometry to study the relative equilibria of the four-vortex problem when two pairs of
vortices have the same vortex strength. Specifically, if Γi ∈R−{0} denotes the vortex
strength of the ith vortex, we set Γ1 = Γ2 = 1 and Γ3 = Γ4 = m, treating m as a real
parameter. Our main goal is to classify and describe all solutions as m varies. Pla-
nar four-vortex configurations that are not collinear are called strictly planar. Strictly
planar configurations that do not contain any three vortices which are collinear can
be classified as either concave or convex. A concave configuration has one vortex
which is located strictly inside the convex hull of the other three, whereas a convex
configuration does not have a vortex contained in the convex hull of the other three
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vortices. A configuration is called a kite if two vortices are on an axis of symmetry
and the other two vortices are symmetrically located with respect to this axis. Kite
configurations may either be concave or convex.

The symmetry and asymmetry of solutions also plays a major role in our analysis.
In fact, part of the motivation behind our work was to determine whether symmetry
could be proven for this choice of vorticities when m > 0 and the configuration is
assumed to be convex. This question, while solved in the Newtonian four-body prob-
lem when the equal masses are assumed to be opposite each other in a convex central
configuration (Albouy et al. 2008; Perez-Chavela and Santoprete 2007), is still open
for the case when equal masses are assumed to be adjacent.

1.1 Summary of Main Results

One of the main results in this work is proving that any convex relative equilibrium
with m > 0, and any concave solution with m < 0, must have a line of symmetry.
This, in turn, allows us to describe the solutions in great detail. For the convex case
and m > 0, the symmetric solutions are a rhombus and an isosceles trapezoid. In the
concave case and m < 0, there is a symmetric solution only when −1/2 < m < 0.
This consists of an isosceles triangle with an interior vortex on the axis of symmetry.

Another major result of our work is a precise count on the number and type of
solutions for different values of m (see Table 1). Without loss of generality, we restrict
to the case where m ∈ (−1,1]. The choice m = −1 implies that Γ = ∑

i Γi = 0, a

Table 1 The third column of the table lists the number of relative equilibria equivalence classes for the
four-vortex problem with vortex strengths Γ1 = Γ2 = 1 and Γ3 = Γ4 = m, in terms of m and the type of
configuration. The last column lists the corresponding theorem or lemma in this paper. The special value
m∗ ≈ −0.5951 is the only real root of the cubic 9m3 + 3m2 + 7m+ 5. Kiteij refers to a kite configuration
with vortices i and j on the axis of symmetry

Shape m ∈ (−1,1] Type of solution (number of) Theorem(s)

Convex m = 1 Square (6) 7.1, 7.7

0 < m < 1 Rhombus (2), Isosceles Trapezoid (4) 7.1, 7.7

−1 < m < 0 Rhombus (4) 7.7

Asymmetric (8) 6.10

−1/2 < m < 0 Kite34 (4) 7.2

m∗ < m < −1/2 Kite12 (4) 7.6

Concave m = 1 Equilateral Triangle with Interior Vortex (8) 7.2

0 < m < 1 Kite34 (8) 7.2

Asymmetric (8) 6.10

−1/2 < m < 0 Kite12 (4) 7.2

Collinear m = 1 Symmetric (12) 5.2

0 < m < 1 Symmetric (4) 5.2

Asymmetric (8) 5.2

−1 < m < 0 Symmetric (2) 5.2

−1/2 < m < 0 Asymmetric (4) 5.2
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Fig. 1 The geometrically
distinct solutions for m = 2

5

Fig. 2 The geometrically
distinct solutions for m = − 1

5

special case examined in Sect. 4.2. For any m < −1 or m > 1, we can rescale the
circulations and relabel the vortices to return to a particular case with m ∈ (−1,1].

When counting solutions, we treat each configuration as a distinct point in R
8

and use the standard convention from celestial mechanics that solutions which are
identical under scaling or rotation are considered equivalent. However, two solutions
identical under a reflection are counted separately. Due to the symmetry in the choice
of circulations, we may generate new solutions by simply interchanging vortices 1
and 2, or vortices 3 and 4, or both. Thus, in general, any particular configuration gen-
erates four solutions. Additionally, if it does not have a line of symmetry, then we can
reflect each of these solutions to arrive at a count of eight. For symmetric configura-
tions, we must reduce the count depending on how much symmetry is present. For
example, when m > 0, there is a unique isosceles trapezoid configuration that leads
to a count of four solutions once all possible permutations are considered (reflecting
about the line of symmetry is equivalent to interchanging both pairs of vortices). On
the other hand, there is a unique rhombus solution for m > 0, but this only gives a
count of two due to equivalence after a 180◦ rotation.

The geometrically distinct solutions (not identical under a relabeling, rotation
or reflection) for m = 2/5, m = −1/5, m = −0.55, and m = −7/10 are shown
in Figs. 1, 2, 3 and 4, respectively. Vortices 1 and 2 are denoted by open disks
(Γ1 = Γ2 = 1), while vortices 3 and 4 are identified by solid disks (Γ3 = Γ4 = m).
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Fig. 3 The geometrically
distinct solutions for m = −0.55

Fig. 4 The geometrically
distinct solutions for m = − 7

10

When m = 1 (all vortex strengths equal), there are 26 solutions, all symmetric.
Allowing for relabeling, there are only three geometrically distinct configurations:
a square, an equilateral triangle with a vortex at the center, and a collinear config-
uration. This is different from the Newtonian case, where an additional symmetric,
concave solution exists, consisting of an isosceles triangle with an interior body on
the axis of symmetry (Albouy 1996). The reason for the contrast is that the equilat-
eral triangle with central vortex is degenerate when all vortices have the same strength
(Albouy 1996; Meyer and Schmidt 1988; Palmore 1982). An interesting bifurcation
occurs as m decreases through m = 1, where the equilateral triangle solution splits
into four different solutions. If vortex 3 or 4 is at the center of the triangle, then
the solution for m = 1 bifurcates into two different isosceles triangles with the inte-
rior vortex on the line of symmetry. In this case, the larger-strength vortices are on
the base of the triangle. If vortex 1 or 2 is at the center of the triangle, the solution
branches into two asymmetric concave configurations that are identical under a reflec-
tion. Thus, the number of solutions increases from 26 to 34 for the case 0 < m < 1.
This concurs with Palmore’s result in Palmore (1982), which specifies a lower bound
of 34 non-degenerate solutions for the four-vortex problem with positive vorticities.

An interesting geometric feature of our problem is the continuous transformation
from concave to convex configurations as m becomes negative. One of the concave
kite families with vortices 3 and 4 on the line of symmetry becomes a convex kite
as m decreases through 0. At m = 0, three vortices become collinear (either vor-
tex 3 or vortex 4 lies between vortices 1 and 2). The same phenomenon occurs for
the asymmetric configurations: as m decreases through 0, the asymmetric solutions
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continuously change from concave to convex, passing through a “boundary” config-
uration at m = 0 where three vortices are collinear. Not all solutions persist as m

becomes negative. For example, the isosceles trapezoid family disappears as m be-
comes negative (solutions become complex). Moreover, some solutions, such as the
rhombus, keep their shape even after m flips sign.

For m < 0 there are two interesting bifurcation values at m = −1/2 and m =
m∗ ≈ −0.5951, the only real root of the cubic 9m3 + 3m2 + 7m + 5. There are 26
solutions for −1/2 < m < 0, including a family of concave kite configurations having
one of the positive strength vortices in the interior of an isosceles triangle formed by
the outer three. As m approaches −1/2, the triangle formed by the interior vortex
and the base of the outer isosceles triangle limits on an equilateral triangle while
the fourth vortex (at the apex of the outer isosceles triangle) heads off to infinity.
For m < −1/2, this family bifurcates into a convex configuration. This new family
of convex kites, with vortices 1 and 2 on the axis of symmetry, exists only for m∗ <

m < −1/2. In sum, there are 18 solutions for m∗ < m < −1/2, and 14 solutions when
m = −1/2 or when −1 < m ≤ m∗. The singular bifurcation at m = −1/2 occurs in
part because the leading coefficient of a defining polynomial vanishes. This is likely
a consequence of the fact that the sum of three vorticities vanishes when m = −1/2,
a particularly troubling case when attempting to prove finiteness for the number of
relative equilibria in the full four-vortex problem (see Hampton and Moeckel 2009).
The bifurcation at m = m∗ is a pitchfork bifurcation, as discussed in Sect. 7.4.

1.2 Comparisons with the Newtonian n-Body Problem

There are some key differences between the vortex case and the n-body problem.
First, in contrast with the Newtonian case, it is possible to have actual equilibria
(rest points of the flow) in the n-vortex problem. This can only happen when the total
vortex angular momentum

∑
i<j ΓiΓj vanishes, a condition that requires circulations

of opposite signs. For n = 4, explicit solutions can be derived (see Hampton and
Moeckel 2009). An analysis of the equilibrium solutions in the context of symmetry
is presented in Sect. 4.1.

Another difference occurs for the special case m = 1. As described above, while
both problems have the square and a symmetric collinear configuration as solutions,
the only concave relative equilibrium for m = 1 is the equilateral triangle with a
vortex at the center and this solution is degenerate (not isolated after eliminating the
rotational symmetry). This contrasts with the equal mass four-body problem where
an additional concave kite exists (Albouy 1996) and the equilateral triangle solution
is non-degenerate.

Some expected differences arise due to the fact that the vorticities can be of oppo-
site sign. For example, there are no concave relative equilibria when m ∈ (−1,−1/2).
This is opposite the result of Hampton (2002) that states for any choice of four pos-
itive masses, there exists a concave central configuration. Another contrast comes
from the fact that there are two geometrically distinct rhombi when m < 0 (discussed
in Sect. 7.4) as well as a convex kite for m∗ < m < −1/2. This means that there is not
a unique (up to symmetry) convex relative equilibrium when m < 0. This contrasts
with the Newtonian four-body problem where it is thought (although unproven) that
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there is a unique convex central configuration for any fixed ordering of four positive
masses (Problem 10 in Albouy et al. 2012).

Here is the outline for the remainder of the paper. In the next section we define a
relative equilibrium and explain how to use mutual distances as variables in the planar
four-vortex problem. In Sect. 3, we describe the relevant algebraic techniques used to
analyze and quantify the number of solutions. Section 4 examines the interplay be-
tween symmetry and equality of vorticities in two special cases: equilibria and van-
ishing total vorticity. Section 5 examines the collinear case in detail. Our main sym-
metry theorem is proved in Sect. 6 along with a proof of the existence of asymmetric
solutions. The different symmetric cases are covered in Sect. 7. Throughout our re-
search, symbolic computations (e.g., calculation of Gröbner bases) were performed
using Sage (Stein et al. 2011), SINGULAR (Decker et al. 2011) and Maple15TM.

2 Relative Equilibria

We begin with the equations of motion and the definition of a relative equilibrium for

the planar n-vortex problem. Let J = [ 0 1
−1 0

]
, and let ∇j denote the two-dimensional

partial gradient with respect to xj . A system of n point vortices with vortex strengths
Γi �= 0 and positions xi ∈R

2 evolves according to

Γiẋi = J∇iH = −J

n∑′

j=1

ΓiΓj

r2
ij

(xi − xj ), 1 ≤ i ≤ n, (1)

where H = −∑
i<j ΓiΓj log rij , rij = ‖xi − xj‖, and the prime on the summation

indicates omission of the term with j = i.
A relative equilibrium motion is a solution of (1) of the form xi(t) = c +

e−Jλt (xi(0) − c), that is, a periodic solution given by a uniform rotation with an-
gular velocity λ �= 0 around some point c ∈ R

2. Such a solution is possible if and
only if the initial positions xi(0) satisfy the equations

−λ
(
xi(0) − c

) = 1

Γi

∇iH =
n∑′

j=1

Γj

r2
ij

(
xj (0) − xi(0)

)
(2)

for each i ∈ {1, . . . , n}. Denote Γ = ∑
i Γi as the total circulation and assume for

the moment that Γ �= 0. Multiplying the ith equation in (2) by Γi and summing
over i shows that the center of rotation c is equivalent to the center of vorticity,
c = 1

Γ

∑
i Γixi . If Γ = 0, then we obtain instead that the moment of vorticity

∑
i Γixi

must vanish.

Definition 2.1 A set of initial positions xi(0) satisfying Eq. (2) for each i ∈ {1, . . . , n}
is called a central configuration. The corresponding rigid rotation with angular ve-
locity λ �= 0 is called a relative equilibrium. We will often use these two terms inter-
changeably.
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Note that if (x1, x2, . . . , xn) is a central configuration, then so is (κx1, κx2,

. . . , κxn) for any scalar κ . Here, the angular velocity λ must be scaled by a factor
of 1/κ2. It is also readily apparent from Eq. (2) that (eJθx1, e

Jθx2, . . . , e
Jθxn) is

also a central configuration for any angle θ with the same angular velocity λ. Thus,
relative equilibria are not isolated solutions. As described in the introduction, we
handle these symmetries by fixing the scaling and identifying configurations that are
equivalent under rotation. In addition, it is possible to reflect each vortex about one
of the coordinate axes since, for example, multiplying the first component of each xi

by −1 still generates a solution to Eq. (2). We count reflected solutions separately
unless they are equivalent under a rotation.

Define the angular impulse I with respect to the center of vorticity as

I = 1

2

n∑

i=1

Γi‖xi − c‖2.

I measures the size of the system and is the analog of the moment of inertia in the
n-body problem. It is well known that I is a conserved quantity in the planar n-vortex
problem (Newton 2001). We can then rewrite Eq. (2) as

∇H + λ∇I = 0, (3)

where ∇ = (∇1, . . . ,∇n). Therefore, λ can be viewed as a Lagrange multiplier and
any solution of (2) can be interpreted as a critical point of the Hamiltonian H(x)

under the condition that I remains constant. Using the homogeneity of the functions
H and I , Eq. (3) implies that the angular velocity λ in a relative equilibrium is given
by

λ = L

2I
, where L =

n∑

i<j

ΓiΓj (4)

is the total vortex angular momentum. This implies that in the case where all vortex
strengths are positive, λ > 0 and the relative equilibrium is rotating in the counter-
clockwise direction. It is also important to note that, for any relative equilibrium with
a particular set of vortex strengths Γi , we can scale the vorticities by some common
factor ν and maintain the relative equilibrium, but with a new angular velocity νλ. If
ν < 0, then the sign of λ flips, as does the direction of rotation.

2.1 Using Mutual Distances as Coordinates

We now consider the case of n = 4 vortices. Our presentation follows the approach
of Schmidt (2002) in describing the work of Dziobek (1900) for the Newtonian n-
body problem. We want to express Eq. (3) in terms of the mutual distance variables
rij . Between four vortices there are six mutual distances, which, in general, define a
tetrahedron. If the configuration is to lie in a plane, then the volume of this tetrahedron
must be zero. This condition is usually expressed in terms of the Cayley–Menger
determinant. The Cayley–Menger determinant for the volume V is an expression that
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gives the volume of a tetrahedron in terms of the lengths of its edges:

eCM = 288V 2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 1 1 1 1
1 0 r2

12 r2
13 r2

14

1 r2
12 0 r2

23 r2
24

1 r2
13 r2

23 0 r2
34

1 r2
14 r2

24 r2
34 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Therefore, planar central configurations can be viewed as critical points of H un-
der the condition that the moment of inertia remains constant and the Cayley–Menger
determinant vanishes, i.e., eCM = 0. Let μ and λ be Lagrange multipliers. Then, pla-
nar central configurations are obtained as critical points of

H + λ(I − I0) + μ

32
eCM (5)

with the constraints I = I0 and eCM = 0, where I0 is some fixed constant value of the
moment of inertia. Using the homogeneity of H , I , and eCM, the value of λ in this
setup is identical to one given in Eq. (4).

To find ∇eCM restricted to planar configurations, we use the following important
formula:

∂eCM

∂r2
ij

= −32AiAj ,

where Ai is the oriented area of the triangle Ti whose vertices are all the vortices
except for the ith vortex. Here, the signs of the oriented areas can be obtained by using
the following convention. First, list the points of the triangle in counterclockwise
order and append the missing point to the end of the list to form a permutation φ ∈ S4.
Then, the sign of φ, that is, the sign of the permutation that takes (1234) to φ, is the
sign of Ai . Note that from our point of view, the opposite convention (clockwise
order) is equivalent, since our equations only depend on the product of the oriented
areas. One important property of this sign convention is that A1 +A2 +A3 +A4 = 0.

To give an idea of how the sign convention works, suppose that the four vortices
form a concave configuration with the fourth vortex in the convex hull of the other
three. Then we either have A4 > 0 and A1,A2,A3 < 0, or A4 < 0 and A1,A2,A3 >

0. On the other hand, if we have a convex configuration where the first and second
vortices are opposite each other, then A1 and A2 will have the same sign, and A3 and
A4 will have the same sign, but the signs of each pair will be opposite. In general,
for a concave configuration with the ith vortex in the interior, Ai has one sign and
the remaining three oriented areas have the opposite sign. For a convex configuration
with vortices i and j opposite each other, Ai and Aj have the same sign, and the
remaining two oriented areas have the opposite sign. This concurs with the set up
described in Schmidt (2002).

Setting the gradient of (5) equal to zero yields the equations

∂H

∂r2
ij

+ λ
∂I

∂r2
ij

+ μ

32

∂eCM

∂r2
ij

= 0.
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If Γ �= 0, then I can be written in terms of the mutual distances as

I = 1

2Γ

∑

i<j

ΓiΓj r
2
ij .

Using this, we obtain the following equations for a four-vortex central configuration:

ΓiΓj

(
r−2
ij + λ′) = σAiAj , (6)

where λ′ = −λ/Γ , σ = −2μ, I = I0, and eCM = 0. If Γ = 0, then a different ap-
proach is more useful (see Celli 2005; Hampton and Moeckel 2009 for expositions of
the equations). We discuss the role of specific symmetries when Γ = 0 in Sect. 4.2.

Assuming Γ �= 0, we group the equations in (6) so that when they are multiplied
together pairwise, their right-hand sides are identical:

Γ1Γ2
(
r−2

12 + λ′) = σA1A2, Γ3Γ4
(
r−2

34 + λ′) = σA3A4,

Γ1Γ3
(
r−2

13 + λ′) = σA1A3, Γ2Γ4
(
r−2

24 + λ′) = σA2A4,

Γ1Γ4
(
r−2

14 + λ′) = σA1A4, Γ2Γ3
(
r−2

23 + λ′) = σA2A3.

(7)

This yields the well-known Dziobek equations (Dziobek 1900), but for vortices

(
r−2

12 + λ′)(r−2
34 + λ′) = (

r−2
13 + λ′)(r−2

24 + λ′) = (
r−2

14 + λ′)(r−2
23 + λ′). (8)

From the different ratios of two vorticities that can be derived from (7), we obtain
the following set of equations:

Γ1A2

Γ2A1
= ρ23 + λ′

ρ13 + λ′ = ρ24 + λ′

ρ14 + λ′ = ρ23 − ρ24

ρ13 − ρ14
,

Γ1A3

Γ3A1
= ρ23 + λ′

ρ12 + λ′ = ρ34 + λ′

ρ14 + λ′ = ρ23 − ρ34

ρ12 − ρ14
,

Γ1A4

Γ4A1
= ρ24 + λ′

ρ12 + λ′ = ρ34 + λ′

ρ13 + λ′ = ρ24 − ρ34

ρ12 − ρ13
,

Γ2A3

Γ3A2
= ρ13 + λ′

ρ12 + λ′ = ρ34 + λ′

ρ24 + λ′ = ρ13 − ρ34

ρ12 − ρ24
,

Γ2A4

Γ4A2
= ρ14 + λ′

ρ12 + λ′ = ρ34 + λ′

ρ23 + λ′ = ρ14 − ρ34

ρ12 − ρ23
,

Γ3A4

Γ4A3
= ρ14 + λ′

ρ13 + λ′ = ρ24 + λ′

ρ23 + λ′ = ρ14 − ρ24

ρ13 − ρ23
,

(9)

where ρij = r−2
ij .

Eliminating λ′ from Eq. (8) and factoring yields the important relation

(
r2

13 − r2
12

)(
r2

23 − r2
34

)(
r2

24 − r2
14

) = (
r2

12 − r2
14

)(
r2

24 − r2
34

)(
r2

13 − r2
23

)
. (10)
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Assuming the six mutual distances determine an actual configuration in the plane,
this equation is necessary and sufficient for the existence of a four-vortex relative
equilibrium. The ratios of the corresponding vortex strengths are then found from the
equations in (9).

The sign of λ′ = −λ/Γ for a given relative equilibrium is of some interest. Note
that scaling the vorticities by any ν ∈ R − {0} does not change the value of λ′. If all
the vorticities have the same sign, then λ′ < 0 is ensured. However, if the vorticities
have different signs, it is possible that λ′ could be positive.

When λ′ > 0, the equations in (9) imply that
ΓiAj

Γj Ai
> 0 for any choice of indices

i and j . Taking Γ1 = Γ2 = 1 and Γ3 = Γ4 = m with m < 0, we see that the only
possible solutions have A1,A2 > 0 and A3,A4 < 0, or A1,A2 < 0 and A3,A4 > 0.
The configuration must be convex with vortices 1 and 2 on one diagonal and vortices
3 and 4 on the other. We show in Sect. 7.3 that the configuration must have at least
one axis of symmetry. There exists a family of convex kite configurations for m∗ <

m < −1/2 and a family of rhombi (see Sect. 7.4) for −1 ≤ m < −2 + √
3. These are

the only possible solutions to our problem having λ′ > 0.
If Γi �= 0 for each i, then a strictly planar central configuration is either concave

or convex. To see this, suppose by contradiction that vortices 1,2 and 3 are collinear,
but vortex 4 does not lie on their common line. Then, A4 = 0 and (7) imply that
ΓiΓ4 = 0 for at least one choice of i ∈ {1,2,3}, otherwise the configuration could
not be realized geometrically. The argument is the same regardless of which three
vortices are assumed to be collinear.

Proposition 2.2 Suppose we have a concave central configuration with four vortices
and Γ �= 0.

1. If all the vorticities are positive (negative), then all of the exterior sides are longer
than all of the interior ones, and 1/

√−λ′ is less than the lengths of the exterior
sides and greater than the lengths of the interior sides.

2. If two of the vorticities are positive and two are negative, then the exterior sides
connecting vortices with vorticities of opposite sign and the interior side connect-
ing vortices with vorticities of the same sign have lengths greater than 1/

√−λ′,
while the remaining sides have lengths less than 1/

√−λ′.

Proof Note that λ′ < 0 since the central configuration is assumed to be concave.
(1) Let Γ4 be the interior vorticity and suppose that A4 < 0. Then we have

A1,A2,A3 > 0. Assume that ρ34 > −λ′. Then, using the equations in (9), we ob-
tain

ρ12, ρ13, ρ23 < −λ′ < ρ14, ρ24, ρ34,

or

r12, r13, r23 > 1/
√−λ′ > r14, r24, r34,

namely all the exterior edges are longer than the interior ones. On the other hand, if
we had assumed ρ34 < −λ′, then the inequalities above would be reversed and the
configuration could not be realized geometrically since the interior sides cannot all
be longer than the exterior sides.
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(2) Suppose that Γ1,Γ2 > 0 and Γ3,Γ4 < 0. First, let Γ4 be the interior vorticity
and suppose that A4 < 0. Then we have A1,A2,A3 > 0. If ρ34 < −λ′, then, using
the equations in (9), we obtain

ρ13, ρ23, ρ34 < −λ′ < ρ12, ρ14, ρ24,

or

r13, r23, r34 > 1/
√−λ′ > r12, r14, r24.

If we had assumed ρ34 > −λ′, then the inequalities above would be reversed and
the configuration could not be realized geometrically. We show this with a proof by
contradiction. Assume ρ34 > −λ′. Then |A4| < |A3| since the two triangles have one
side in common and r24, r14 > r23, r13. But this is absurd since T4 contains T3.

Next, suppose that Γ1 is the interior vorticity and that A1 < 0. Then we have
A2,A3,A4 > 0. If ρ34 > −λ′ then, using the equations in (9), we obtain

ρ12, ρ23, ρ24 < −λ′ < ρ13, ρ14, ρ34,

or

r12, r23, r24 > 1/
√−λ′ > r13, r14, r34.

If we had assumed ρ34 < −λ′, then the inequalities above would be reversed, and
the configurations could not be realized geometrically. (The proof is similar to the
argument in the previous paragraph.) �

Before we state an analogous theorem for the convex case, we recall the following
useful geometric lemma:

Lemma 2.3 The combined length of the diagonals of a convex quadrilateral is
greater than the combined length of any pair of its opposite sides.

Proof Order the vortices counterclockwise. Let o be the position vector describing
the intersection of the diagonals, and let rio = ‖xi − o‖. Applying the triangle in-
equality to the triangle with vertices x1, x2, and o, and to the triangle with vertices
x3, x4, and o, yields

r1o + r2o > r12 and r3o + r4o > r34.

Adding these two inequalities together, we obtain r13 + r24 > r12 + r34. A similar
reasoning can be applied to the remaining two triangles. �

Proposition 2.4 Suppose we have a convex central configuration with four vortices,
with Γ �= 0 and λ′ < 0.

1. If all the vorticities are positive (negative), then all exterior sides are shorter than
the diagonals. Furthermore, the lengths of all exterior sides are less than 1/

√−λ′
and the lengths of all the diagonals are greater than 1/

√−λ′. The shortest and
longest exterior sides have to face each other.
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2. If two of the vorticities are positive and two are negative, and the positive strength
vortices are adjacent, then the exterior sides connecting vortices with vorticities
of opposite sign have length less than 1/

√−λ′. All the other sides have length
greater than 1/

√−λ′.
3. If two of the vorticities are positive and two are negative, and the positive strength

vortices are opposite each other, then either all of the sides have length less than
1/

√−λ′, or all of the sides have length greater than 1/
√−λ′.

Proof (1) The proof is analogous to the one for the Newtonian four-body problem
(see Schmidt 2002).

(2) Order vortices 1,2,3,4 counterclockwise and let Γ1,Γ2 > 0 and Γ3,Γ4 < 0.
The sign of the four areas are then A1 < 0,A3 < 0 and A2 > 0,A4 > 0. If we assume
that ρ34 > −λ′, then we find from the equations in (9) that

ρ12, ρ13, ρ24, ρ34 < −λ′ < ρ14, ρ23,

or

r12, r13, r24, r34 > 1/
√−λ′ > r14, r23.

On the other hand, if we had assumed that ρ34 < −λ′, then the inequalities above
would be reversed and, by Lemma 2.3, the configuration could not be realized geo-
metrically.

(3) Let Γ1,Γ2 > 0 and Γ3,Γ4 < 0, and assume the vortices of the same sign
are opposite one another. The signs of the four areas are then A1 > 0,A2 > 0, and
A3 < 0,A4 < 0 (or vice versa). If we assume that ρ34 > −λ′, then we find from the
equations in (9) that

ρ12, ρ13, ρ24, ρ34, ρ14, ρ23 > −λ′,

or

r12, r13, r24, r34, r14, r23 < 1/
√−λ′.

If ρ34 < −λ′, then the two previous inequalities are reversed. �

2.2 Symmetric Configurations

One immediate consequence of the Dziobek equations (8) and of Eq. (10) is that if
two mutual distances containing a common vortex are equal (e.g., r12 = r13), then the
same equality of distances is true for the excluded vortex (here, r24 = r34). Specifi-
cally, if i, j, k, l are distinct indices, then we have

rij = rik if and only if rlj = rlk. (11)

This relation is independent of the vortex strengths although Γj = Γk necessarily
must follow. Any configuration satisfying Eq. (11) has an axis of symmetry contain-
ing vortices i and l, forming a kite configuration. It may be either convex or concave,
but it cannot contain three vortices on a common line due to the equations in (7). Un-
like the Newtonian four-body problem, since there is no restriction here on the signs
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of the vortex strengths, it follows that any kite configuration has a corresponding set
of vorticities that make it a relative equilibrium. Assuming the configuration is not
an equilateral triangle with a vortex at the center, the vorticities are unique up to a
common scaling factor and can be determined by the equations in (9).

Next we consider the case where two mutual distances without a common index
are equal. In other words, suppose one of the following three equations holds:

r12 = r34, r13 = r24, r14 = r23. (12)

Then, it does not necessarily follow that another pair of mutual distances must be
equal. However, if different pairs of vortices are assumed to be of equal strength,
then we can conclude an additional symmetry. This fact will be important in Sect. 6.1
when verifying that symmetry is required in certain cases.

Lemma 2.5 (Symmetry Lemma) Suppose that we have a strictly planar four-vortex
relative equilibrium with Γ1 = Γ2, Γ3 = Γ4, and Γ �= 0. Then,

r13 = r24 if and only if r14 = r23. (13)

If either equation in (13) holds, the configuration is convex and has either one or two
axes of symmetry. In this case, the configuration is either an isosceles trapezoid with
vortices 1 and 2 on one base, and 3 and 4 on the other, or it is a rhombus with vortices
1 and 2 opposite each other.

Proof Suppose that r13 = r24. Then, by one of the equations in (7), Γ1Γ3(r
−2
13 +λ′) =

Γ2Γ4(r
−2
24 + λ′) implies that

A1A3 = A2A4. (14)

We also have

A1 + A2 + A3 + A4 = 0 (15)

since the Ai ’s are oriented areas. Solving Eq. (15) for A4 and substituting into
Eq. (14) yields the relation

(A1 + A2)(A2 + A3) = 0.

There are two possibilities. First, suppose that A1 = −A2. Then Eq. (15) immedi-
ately implies A4 = −A3. The configuration is convex due to the signs of the Ai ’s and
must have the side containing vortices 1 and 2 parallel to the side containing vortices
3 and 4. Then, by another equation in (7), σA1A4 = σA2A3 implies that

Γ1Γ4
(
r−2

14 + λ′) = Γ2Γ3
(
r−2

23 + λ′).

Since Γ1 = Γ2 and Γ3 = Γ4, it follows that r14 = r23. The configuration must be an
isosceles trapezoid with congruent legs and diagonals, and base lengths given by r12
and r34.

Next, suppose that A3 = −A2. Then, A4 = −A1 immediately follows from
Eq. (15). The configuration is convex and must have the side containing vortices
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1 and 4 parallel to the side containing vortices 2 and 3. Since r13 = r24, the con-
figuration is either an isosceles trapezoid with r12 = r34 or is a parallelogram with
r14 = r23. For the isosceles trapezoid, the lengths r13 and r24 can correspond to either
a pair of congruent diagonals or a pair of congruent legs, depending on the ordering
of the vortices. However, for the parallelogram, these lengths must correspond to a
pair of opposite sides as the diagonals do not have to be congruent.

It turns out that, in this case, the isosceles trapezoid is actually a square. To see
this, by an equation in (7), σA1A2 = σA3A4 implies that

Γ 2
1

(
r−2

12 + λ′) = Γ 2
3

(
r−2

34 + λ′).

Thus, if r12 = r34, then Γ1 = Γ3 and all vortex strengths are equal (the case Γ1 = −Γ3
is excluded since Γ �= 0). In this case, it is straightforward to show that the isosceles
trapezoid reduces to a square (see Sect. 7.1) and thus r14 = r23.

In the case of the parallelogram, we have A1 = A2 = −A3 = −A4. By the equa-
tions in (7), this implies that r13 = r14 = r23 = r24 and the configuration is a rhombus
with vortices 1 and 2 opposite each other. This proves the forward implication.

The proof in the reverse direction is similar. If r14 = r23, then we derive A1A4 =
A2A3 from an equation in (7). Taken with Eq. (15), this yields

(A1 + A2)(A1 + A3) = 0.

As before, the case A1 = −A2 leads to an isosceles trapezoid with r13 = r24 and
base lengths given by r12 and r34. The case A1 = −A3 leads to either the square
or a rhombus configuration with vortices 1 and 2 across from each other. In either
configuration we deduce that r13 = r24. This completes the proof. �

Remark

1. Similar results exist if different pairs of vortices are assumed to be equal. For
example, if Γ1 = Γ3 and Γ2 = Γ4, then r12 = r34 if and only if r14 = r23.

2. The result is also valid in the Newtonian four-body problem (and for other poten-
tials of the same form) since it only depends on the geometry of the configuration
and the inherent structure of the equations in (7).

2.3 The Albouy–Chenciner Equations

For the remainder of the paper (excluding the special cases discussed in Sect. 4), we
will assume the equality of vortex strengths specified in Lemma 2.5. Specifically, we
set Γ1 = Γ2 = 1 and Γ3 = Γ4 = m, treating m as a real parameter.

When Γ �= 0, the equations for a relative equilibrium can be written in polynomial
form as

fij =
n∑

k=1

Γk

[
Sik

(
r2
jk − r2

ik − r2
ij

) + Sjk

(
r2
ik − r2

jk − r2
ij

)] = 0,

where 1 ≤ i < j ≤ n and the Sij are given by

Sij = 1

r2
ij

+ λ′ (i �= j), Sii = 0.
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These very useful equations are due to Albouy and Chenciner (1997) (see also Hamp-
ton and Moeckel 2005 for a nice derivation). They form a polynomial system in the
rij variables after clearing the denominators in the Sij terms.

Since any relative equilibrium may be rescaled, we will impose the normalization
λ′ = −1 unless otherwise stated. This usually can be assumed without loss of gen-
erality. However, as explained in Sect. 2.1, for m < 0 the normalization λ′ = 1 also
needs to be considered. This case is discussed in Sects. 7.3 and 7.4. We denote the
complete set of polynomial equations determined by fij = 0 as F .

From the Albouy–Chenciner equations we can derive a more restrictive set of
equations, namely

gij =
n∑

k=1

ΓkSik

(
r2
jk − r2

ik − r2
ij

) = 0.

Since gij �= gji , these give 12 distinct equations. We denote the complete set of poly-
nomial equations determined by gij = 0 as G, and we will refer to them as the un-
symmetrized Albouy–Chenciner equations.

The solutions of the Albouy–Chenciner equation give configurations of all dimen-
sions, but, in the four-vortex problem, they can be specialized to the strictly planar
case by adding the three Dziobek equations in (8). Introducing the variables sij = r2

ij ,
these equations can be written as

hijkl = (
s−1
ij + λ′)(s−1

kl + λ′) − (
s−1
ik + λ′)(s−1

j l + λ′) = 0,

where i, j , k, and l are all distinct indices. We denote the set of Dziobek equations
(with denominators cleared) as H.

3 Algebraic Techniques

In this section we briefly describe several of our main algebraic techniques for analyz-
ing solutions to our problem: Descartes’ rule of signs, Sturm’s theorem, elimination
theory using Gröbner bases, a useful lemma to distinguish when the roots of a quartic
are real or complex, and Mobius transformations.

3.1 Descartes’ Rule of Signs and Sturm’s Theorem

Descartes’ rule of signs (see Uspensky 1948) is a technique for determining an upper
bound on the number of positive or negative roots of a polynomial. The rule states
that the number of positive real roots of a polynomial with real coefficients

anx
n + an−1x

n−1 + · · · + a0

is either equal to the number of sign variations in the sequence of its coefficients
an, an−1, . . . , a0, or is less than it by an even number. Multiple roots are counted
separately. The same rule applies to find the number of negative roots once the signs
of the coefficients of the odd-power terms have been flipped.
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Sturm’s theorem (see Uspensky 1948) provides a straightforward technique to find
the exact number of real roots contained in an interval. Let P(x) be a polynomial in
x with real coefficients. The Sturm sequence of polynomials (P0(x),P1(x), . . .) is
defined by

P0(x) = P(x),

P1(x) = P ′(x),

Pn(x) = −rem(Pn−2,Pn−1), n ≥ 2,

where rem(Pn−2,Pn−1) denotes the remainder of the polynomial Pn−2 upon division
by the polynomial Pn−1. The sequence terminates once one of the Pi ’s is zero. We
denote by varP (x0) the number of sign changes in the sequence P0(x0),P1(x0), . . . .
Sturm’s theorem states that if a and b are real numbers that are both not roots of
P(x), then the number of distinct real roots in (a, b) is equal to |varP (a) − varP (b)|.
3.2 Gröbner Bases and Elimination Theory

We mention briefly some elements from elimination theory and the theory of Gröbner
bases that will prove useful in our analysis. For a more detailed exposition see Cox
et al. (2007).

Let K be a field and consider the polynomial ring K[x1, . . . , xn] of polynomials
in n variables over K . Let f1, . . . , fl be l polynomials in K[x1, . . . , xn] and consider
the ideal I = 〈f1, . . . , fl〉 generated by these polynomials. Denote V(I ) as the affine
variety of I .

Definition 3.1 An admissible order > on K[x1, . . . , xn] is called a k-elimination
order if

x
a1
1 . . . xan

n > x
bk+1
k+1 . . . xbn

n

when ai0 > 0 for some i0 ∈ {1, . . . , k}.

A lexicographical (lex) order is an example of k-elimination order for all k.

Definition 3.2 The kth elimination ideal Ik is the ideal of K[xk+1, . . . , xn] defined
by

Ik = I ∩ K[xk+1, . . . , xn].

Gröbner bases provide a systematic way of finding elements of Ik using the proper
term ordering.

Theorem 3.3 (The Elimination Theorem) Let I be an ideal of K[x1, . . . , xn] and
let G be a Gröbner basis of I with respect to a k-elimination order for k where
0 ≤ k ≤ n. Then the set

Gk = G ∩ K[xk+1, . . . , xn]
is a Gröbner basis of the kth elimination ideal Ik .
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Gröbner bases also provide a method of determining when an element of V(Ik)

(a partial solution) can be extended to a full solution in V(I ). This can be achieved
by repeatedly applying the following theorem.

Theorem 3.4 (The Extension Theorem) Let K be an algebraically closed field and
let I be some ideal in K[x1, . . . , xn]. Let Gk−1 be a lex Gröbner basis for the elimi-
nation ideal Ik−1 and write each polynomial in Gk−1 as

gi = hi(xk+1, . . . xn)x
Ni

k + terms where xk has degree < Ni,

where Ni > 0 and hi is nonzero. Suppose that (ak+1, . . . , an) is a partial solution in
V(Ik) and that hi(ak+1, . . . , an) �= 0 for some index i. Then there exists ak ∈ K such
that (ak, ak+1, . . . , an) ∈ V(Ik−1).

3.3 A Useful Lemma for Quartic Polynomials

The analysis of the collinear case, as well as some strictly planar cases, frequently in-
volves solving a quartic equation whose coefficients are polynomials in m. We state
here some useful results about quartic equations. Consider the general quartic poly-
nomial ζ(x) = ax4 + bx3 + cx2 + dx + e, with coefficients in R and a �= 0. We first
remove the cubic term of ζ by the change of variables x = y − b

4a
. This produces the

polynomial aη(y), where η is the shifted quartic η(y) = y4 +py2 + qy + r . The dis-
criminant  of any polynomial is a positive constant times the square of the product
of all possible differences of roots. The discriminant of ζ is equivalent to a6 times the
discriminant of η. For a general quartic, it is straightforward to check that if  > 0,
then the roots are either all real or all complex (two pairs of complex conjugates). If
 < 0, then there are two real roots and two complex roots. The roots are repeated if
and only if  = 0.

Let y1, y2, y3, and y4 be the four roots of η(y). By construction, y1 + y2 + y3 +
y4 = 0. It follows that

z1 = −(y1 + y2)
2, z2 = −(y1 + y3)

2, z3 = −(y1 + y4)
2

are the roots of the resolvent cubic ξ(z) = z3 −2pz2 + (p2 −4r)z+q2. The discrim-
inant of ξ is equivalent to the discriminant of η. When the discriminant is positive,
the resolvent cubic is particularly useful for determining whether the roots of η(y)

are all real or all complex. Specifically, if the four roots of η(y) are real, then z1, z2,
and z3 must be negative and real (or if q = 0, then zi = 0 for precisely one i while the
remaining zi ’s are negative). On the other hand, if the four roots of η(y) are complex,
then one of the roots of ξ(z) is less than or equal to zero, but two of the roots of ξ(z)

must be positive and real. These facts can easily be translated into conditions on the
coefficients of the resolvent cubic.

Lemma 3.5 Suppose that the discriminant of a quartic polynomial ζ(x) is positive
and let η(y) = y4 + py2 + qy + r be the shifted quartic related to ζ . Then the four
distinct roots of ζ are real if and only if p < 0 and p2 − 4r > 0.
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Proof Since the discriminant is positive, the roots of ζ are distinct and either all
real or all complex. First suppose that the four roots of ζ(x) are real. Since η(y) is
obtained through a simple translation, it follows that the four roots of η(y) are distinct
and real. Then, the three real roots z1, z2, z3 of the resolvent cubic ξ(z) are negative
with possibly one root equal to zero (if q = 0). This in turn implies that

z1 + z2 + z3 = 2p < 0 and

z1z2 + z1z3 + z2z3 = p2 − 4r > 0.

In the other direction, suppose that p < 0 and p2 −4r > 0. This implies that all the
coefficients of ξ(z) are positive, and by Descartes’ rule of signs, ξ(z) has no positive,
real roots. It follows that the four roots of η(y) cannot be complex. This shows that
the roots of ζ(x) are real. �

3.4 Möbius Transformations

Möbius transformations are a key tool for isolating roots of polynomials since they
allow for a dramatic reduction on the number of variations of signs in the coefficients
of a polynomial (Barros and Leandro 2011). Let P(x1, . . . , xn) be a multivariate poly-
nomial in n variables. We use Möbius transformations of the form

xi = k
(2)
i yi + k

(1)
i

yi + 1
,

where k
(1)
i < k

(2)
i and i = 1, . . . , n, to obtain changes of variables for P(x1, . . . , xn).

The numerator of the rational function thus obtained is a multivariate polynomial in
the variables y1, . . . , yn that restricted to the set [0,∞) × · · · × [0,∞) has the same
number of roots as P(x1, . . . , xn) restricted to [k(1)

1 , k
(2)
1 ) × · · · × [k(1)

n , k
(2)
n ).

Möbius transformations can be used to determine partitions of the space into
blocks so that, in each block, the coefficients of the polynomials under considera-
tion have a very simple behavior with respect to variations of signs. Therefore, we
can use such transformations, together with Descartes’ rule of signs, to determine
whether a polynomial has a root or does not have a root in a given region of space.

4 Special Cases

In this section, we use some results from Hampton and Moeckel (2009) to examine
two special cases: equilibrium solutions and vanishing total vorticity (Γ = 0).

4.1 Symmetric Equilibria

Equilibria are solutions to Eq. (2) with λ = 0. If we choose coordinates so that the
fourth vortex is at the origin, and the third vortex is at (1,0), then the other two
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vortices in a four-vortex equilibrium must be located at

x1 = 1

2(Γ2 + Γ3 + Γ4)
(2Γ4 + Γ2,±

√
3Γ2),

x2 = 1

2(Γ1 + Γ3 + Γ4)
(2Γ4 + Γ1,∓

√
3Γ1),

(16)

where the sign chosen for x2 is the opposite of that for x1 (see Hampton and Moeckel
2009 for details).

According to Eq. (4), for an equilibrium to exist the vorticities must satisfy L = 0.
This is impossible if all the vorticities are equal. If three vorticities are equal, for
example with Γ1 = Γ2 = Γ3 = m, then Γ4 = −m. We can rescale so that m = 1
without loss of generality. Using (16) it is easy to see that the only equilibria are
equilateral triangles with the opposing vortex located in the center.

Now consider equilibria when Γ1 = Γ2 = 1 and Γ3 = Γ4 = m. Then, L = 0 im-
plies m = −2±√

3. Since we are restricting to m ∈ (−1,1], we have m = −2+√
3 ≈

−0.2679. In this case, the equilibria are rhombi with vortices 1 and 2 opposite each
other, and r34

r12
= 2 − √

3 = −m. They possess an interesting geometric property: the
ratio of the smaller diagonal to the larger diagonal equals the square of the com-
mon side length. These rhombi are members of the rhombus B family described in
Sect. 7.4.

Suppose we instead specify the symmetry of the configuration. From (16) it is
immediate that there are no collinear equilibria for nonzero vorticities. There are also
no isosceles trapezoid equilibria. To see this, consider a trapezoid with r14 = r23 and
r13 = r24. Then (16) implies that

Γ2

Γ2 + Γ3 + Γ4
= −Γ1

Γ1 + Γ3 + Γ4
,

but there are no real nonzero vorticities satisfying this equation and L = 0.
Finally, there is the case in which the configuration is a kite (either concave or

convex). We choose vortices 1 and 2 to be on an axis of symmetry, so r13 = r14 and
r23 = r24. Then Eq. (16) implies that Γ3 = Γ4. If we choose any Γ2 �= −2Γ4 with

Γ2 = −2Γ1Γ4 + Γ 2
4

Γ1 + 2Γ4
,

then L = 0 is satisfied and there is a kite equilibrium given by (16). If we fix Γ4 = 1,
then as Γ2 → −2, Γ1 → ∞ and the configuration of vortices 2, 3, and 4 approaches
an equilateral triangle while the ordinate of vortex 1 heads off to ±∞.

4.2 Vanishing Total Vorticity

When the total vorticity Γ = 0, the analysis of stationary vortex configurations (i.e.,
those that do not change their shape) requires equations adapted to this special case.
For four vorticities we simply apply some of the results from Hampton and Moeckel
(2009).
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If three of the vorticities are equal and Γ = 0, we can consider without loss of
generality the case Γ1 = Γ2 = Γ3 = 1 and Γ4 = −3. It is interesting that there are
six asymmetric configurations which rigidly translate (three pairs of configurations,
within a pair the configurations are reflections of one another), but no symmetric
rigidly translating solutions. These configurations can be obtained directly from the
equations in Hampton and Moeckel (2009).

For relative equilibria we use the equations

S1 = S2 = S3 = S4 = s0

and

1

s12
+ 1

s34
= 1

s13
+ 1

s24
= 1

s14
+ 1

s23
, (17)

where

Si = Γj sij + Γksik + Γlsil, {i, j, k, l} = {1,2,3,4}
and s0 is an auxiliary variable. Recall that sij = r2

ij . We clear denominators in the
equations from (17) to get a polynomial system. Using a Gröbner basis to eliminate
s0, we find that for Γ1 = Γ2 = Γ3 = 1, and Γ4 = −3 there are two types of symmetric
relative equilibria. The first is the equilateral triangle with vortex 4 at its center. The
second type is a concave kite with the three equal vorticities on the exterior isosceles
triangle. If we scale the exterior triangle so that its longest side is length 1, then the

base is length
√√

3 − 5, and the other sides of the interior triangle containing vortex

4 are length
√

−1 + √
3.

If two pairs of vorticities are equal and Γ = 0, then we have Γ1 = Γ2 = 1 and
Γ3 = Γ4 = −1. In this case there are no rigidly translating solutions. This is somewhat
surprising since each pair of opposing vortices would rigidly translate if unperturbed.
Using the same equations as we did for the case where three vorticities are equal,
we find that there are two relative equilibria, each of which forms a rhombus. These
appear in the two families of rhombi described in Sect. 7.4, with s34

s12
= 3 ± 2

√
2.

5 Collinear Relative Equilibria

Collinear relative equilibria of the four-vortex problem can be studied directly from
Eq. (2) since in this case it reduces to

−λ(xi − c) =
n∑

j �=i

Γj

xj − xi

for each i ∈ {1,2,3,4}, (18)

where c, xi ∈ R rather than R
2. Clearing denominators from these equations yields a

polynomial system. Rather than fix λ or c, we use the homogeneity and translation
invariance of the system and set x3 = −1 and x4 = 1. As specified earlier, we set
Γ1 = Γ2 = 1 and Γ3 = Γ4 = m ∈ (−1,1], treating m as a parameter.
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5.1 Symmetric Solutions

Given our setup, symmetric configurations correspond to solutions where either x1 =
−x2 or r12 = 2. Both cases are simple enough to analyze using Gröbner bases.

Case 1: x1 = −x2
In this case the center of vorticity c is at the origin. The solutions are the roots of

an even quartic polynomial in x1, given by mx4
1 − 5(m + 1)x2

1 + 1. The discriminant
of this quartic changes sign at m = 0 and there are four real roots for m > 0 but only
two when m < 0. The result is that, for any m ∈ (−1,1], there is a collinear relative
equilibrium with

x1 = −x2 = ±
√

5m + 5 − √
25m2 + 46m + 25

2m
(19)

(with x1 = −x2 = ±1/
√

5 when m = 0). This solution has vortices x1 and x2 sym-
metrically located between vortices x3 and x4, and as m → −1+, the inner vor-
tices approach the outer vortices (with collision at m = −1.) For m ∈ (0,1], |x1|
decreases monotonically in m from 1/

√
5 ≈ 0.4472 to

√
3 − √

2 ≈ 0.3178, while for
m ∈ (−1,0), |x1| decreases monotonically in m from 1 to 1/

√
5.

There is an additional collinear relative equilibrium if m ∈ (0,1] given by

x1 = −x2 = ±
√

5m + 5 + √
25m2 + 46m + 25

2m
.

In this case, the vortices x1 and x2 are symmetrically located outside vortices x3
and x4, and their positions approach ±∞ as m → 0+. The value of |x1| decreases
monotonically in m from ∞ to

√
3 + √

2 ≈ 3.1462.
Case 2: r12 = 2
In this case the center of vorticity c is not necessarily located at the origin; how-

ever, the configuration will be symmetric about some fixed point equidistant from
both the inner and the outer pairs of vortices. Since |x1 − x2| = 2 and x1 = −x2 to-
gether imply |x2| = 1 (collision), the two cases are distinct. If m �= 1, a solution for
case 2 will have the inner and outer pair of vortices having different circulations. It
turns out that this case is impossible when m �= 1.

To see this, we consider the polynomials obtained from system (18) along with
x1 − x2 − 2 and u(x1 + x2) − 1 (to eliminate solutions from Case 1). Computing a
lex Gröbner basis for this set of polynomials quickly yields m = 1. The same result
is obtained when using x1 − x2 + 2. Moreover, in each computation, a fourth-degree
polynomial in x2 is obtained that provides the exact solution for the special case
m = 1.

In sum, there are no solutions with r12 = 2 unless m = 1. When m = 1, there are
eight solutions with r12 = 2 given by (x1, x2) =

(1 ± √
2 ± √

6,−1 ± √
2 ± √

6) and (−1 ± √
2 ± √

6,1 ± √
2 ± √

6), (20)

where the signs in a particular ordered pair are chosen to have the same pattern in each
coordinate (e.g., (1 + √

2 − √
6,−1 + √

2 − √
6)). It is straightforward to check that
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each of these 8 solutions is a scaled version of a solution found in Case 1. Specifically,
for each of the solutions listed in (20) as well as the solutions obtained in Case 1 for
m = 1, there is a rescaling, translation, and relabeling of the vortices that maps the
solution onto

x3 = −1, x2 = −√
3 + √

2, x1 = √
3 − √

2, x4 = 1, (21)

a solution obtained from Eq. (19) when m = 1. We note that solution (21) can be
rescaled to coincide with the roots of the Hermite polynomial H4, as expected (see
Aref 2007a).

5.2 Asymmetric Solutions

To locate any asymmetric solutions, we introduce the variables u and v along with
the equations

u(x1 + x2) − 1 and v(x1 − x2) − 1.

Adding these two equations to the original polynomial system obtained from (18),
we compute a Gröbner basis Gcol with respect to the lex order where c > λ > u >

v > x1 > x2 > m. This basis has 15 elements, the first of which is an even, eighth-
degree polynomial in x2 with coefficients in m, and a basis for the elimination ideal
I5 = I ∩C[x2,m]. Introducing the variable w = x2

2 , this polynomial is given by

ζ(w) = m2(m + 2)(1 + 2m)2w4 − 4m
(
15m4 + 61m3 + 91m2 + 61m + 15

)
w3

+ (
300m5 + 1508m4 + 2910m3 + 2696m2 + 1188m + 200

)
w2

− 4(5m + 4)
(
25m4 + 127m3 + 231m2 + 175m + 45

)
w + (m + 2)3.

If we eliminate x2 instead of x1, the same polynomial is obtained with w = x2
1 . The

discriminant of ζ is

1048576(m + 2)2(m + 1)6(1 + 2m)
(
25m2 + 58m + 25

)3
m2(qu(m)

)2
,

where qu(m) = 2m5 − 16m4 − 96m3 − 162m2 − 108m − 25. For m ∈ (0,1], the
discriminant is strictly positive. However, on the interval [−1,0], the discriminant
vanishes at six different m-values. In increasing order, these values are

−1,m0 ≈ −0.6833,m1 ≈ −0.6066,m2 ≈ −0.5721,−1/2,0.

The values m0 and m1 are roots of the quintic polynomial qu, and m2 = (−29 +
6
√

6)/25 is the largest root of the quadratic 25m2 + 58m + 25. For m = −1, ζ has a
repeated root at 1 of multiplicity four. At m = −1/2, ζ becomes a cubic polynomial
with roots −3 and 1 (multiplicity 2). Thus, the values m = −1 and m = −1/2 have
no physical solutions (just collisions). For m = 0, the quartic reduces to a quadratic,
and we have two possible solutions at w = (9±4

√
5)/5 which correspond to limiting

configurations as m → 0+. The other three values where the discriminant vanishes
also have no physical solutions, as we explain below.
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Lemma 5.1 The quartic polynomial ζ(w) has precisely four positive real roots for
m ∈ (0,1] and two positive real roots for m ∈ (−1/2,0). For m ∈ (−1,−1/2), there
are no positive roots except when m = m0, where there is one positive, repeated root
w0 of multiplicity two.

Proof Using Lemma 3.5, let η be the shifted quartic of ζ(w). From η, the key quan-
tities p and p2 − 4r are found to be

p = −2(25m2 + 58m + 25)(3m4 + 14m3 + 45m2 + 54m + 19)(m + 1)2

m2(m + 2)2(1 + 2m)4

and

p2 − 4r = 16(25m2 + 58m + 25)(m + 1)2t (m)

m4(m + 2)4(1 + 2m)8
,

where

t (m) = 75m12 + 896m11 + 5528m10 + 23492m9 + 77272m8 + 197816m7

+ 376194m6 + 509968m5 + 478976m4 + 302388m3 + 121964m2

+ 28320m + 2875.

For m ∈ (0,1], since the discriminant is positive, p < 0 and p2 − 4r > 0,
Lemma 3.5 applies and the roots of ζ(w) are all real. The fact that they are all pos-
itive follows from Descartes’ rule of signs since ζ(w) has four sign changes while
ζ(−w) has none. For m ∈ (−1/2,0), the discriminant remains positive and using
Sturm’s theorem, one can show that p < 0 and p2 − 4r > 0 both continue to hold. It
follows that ζ(w) has four real roots in this case as well. However, two of the roots
are positive and two are negative since both ζ(w) and ζ(−w) each have two sign
changes.

For the case m ∈ (m2,−1/2), the discriminant is negative and thus there are
precisely two real roots. To show that the real roots are both negative, we note
that at m = m2, the quartic ζ has a repeated root of multiplicity four at w2 =
−(11 + 4

√
6)/5 < 0. We then can check that ζ(w2) as a function of m is strictly

negative for m ∈ (m2,−1/2). Since the leading coefficient of ζ is positive and since
ζ(0) = (m + 2)3 > 0, it follows that both real roots must be negative in this case.
There are no positive roots at m = m2 since w2 < 0 is the only root.

For the interval m ∈ (−1,m2), the discriminant is positive except when it vanishes
at m0 and m1. However, either p > 0 or p2 − 4r < 0 (or both) for m-values on this
interval. Consequently, by Lemma 3.5, if m ∈ (−1,m2) − {m0,m1}, then ζ has four
complex roots.

It remains to check the two cases m = m0 and m = m1, where the discriminant of
ζ vanishes. Using the resolvent cubic, it is possible to show that, for each case, a pair
of complex conjugate roots meet on the real axis to form a real root of multiplicity
two. At m = m1, the derivative of ζ(w) is a cubic with only one real negative root.
Consequently, the repeated real root in this case is negative. For m = m0, the sign
of the coefficient of the linear term for the shifted quartic η(w) is negative, which



J Nonlinear Sci (2014) 24:39–92 63

implies that the repeated real root w0 is positive. Using resultants, it can be shown
that w0 is the largest root of the quintic 5w5 − 53w4 + 98w3 + 198w2 + 9w − 1, or
w0 ≈ 6.9632775. �

While it is interesting that the special parameter value m = m0 has a unique pos-
itive solution, it cannot lead to a physical solution of the problem because x2

1 neces-
sarily has to be a different root of ζ (since we are excluding the symmetric solutions).
But the other roots of ζ are complex. The fact that x1 is complex can also be con-
firmed by solving one of the polynomials in the Gröbner basis Gcol for x1 when
m = m0 and x2 = √

w0.
We summarize our findings for the collinear case in the following theorem.

Theorem 5.2 For the case m ∈ (0,1], there are 12 collinear solutions, one for each
possible ordering of the vortices. If m = 1, all solutions are symmetric and geo-
metrically equivalent to the same configuration; otherwise, there are four symmetric
solutions and eight asymmetric solutions. For m ∈ (−1/2,0), there are a total of six
solutions, two symmetric and four asymmetric, while for m ∈ (−1,−1/2], there are
only two symmetric solutions and no asymmetric solutions.

Proof The second polynomial in the Gröbner basis Gcol, denoted g2, is in the elimi-
nation ideal I4 = I ∩ C[x1, x2,m] and is linear in the variable x1. The coefficient of
x1 is found to be 8(2m + 1)(m + 2)2 · qu(m), which is nonzero for m ∈ (−1/2,1].
By the Extension Theorem, we can extend any solution (x2,m) of ζ = 0 to a partial
solution (x1, x2,m) in V(I4). Moreover, since g2 is linear in x1, there is at most one
such solution, and x1 must be real.

Next, we check that the value of x1 is distinct from the value of x2 (excluding col-
lision) and −x2 (excluding the symmetric solutions). This is accomplished by sub-
stituting x1 = x2 into g2 and then computing the resultant of this polynomial with
ζ(x2,m). A polynomial in m is thus obtained and it is easily checked that this poly-
nomial has no roots for m ∈ (−1/2,1]. Therefore, the value of x1 obtained by solving
g2 = 0 is distinct from x2. A similar calculation, using the substitution x1 = −x2 in
g2, shows that x1 �= −x2 as well.

At this point, the Extension Theorem can be applied four more times using four
of the basis polynomials in Gcol that are linear in the variables v,u,λ, and c, respec-
tively, each having nonzero leading coefficients. Thus, fixing an m ∈ (−1/2,1], for
each positive root of ζ(w), we obtain two possible values of x2, each of which ex-
tends uniquely to a full, real, asymmetric solution of our problem. The precise count
on the number of solutions for each case then follows directly from Lemma 5.1 and
Sect. 5.1.

The fact that there is one collinear relative equilibrium for each ordering of the
vortices when m > 0 follows from a straightforward generalization of a well-known
result in the Newtonian n-body problem due to Moulton (1910). In brief, for each of
the n! connected components of the phase space for the collinear n-vortex problem,
there is a unique minimum of H restricted to the ellipsoid I = I0 (see p. 33 of Meyer
et al. 2009 or Sect. 6.1 of O’Neil 1987 for details). Each such minimum is a collinear
relative equilibrium. Identifying solutions equivalent under a 180◦ rotation of the
plane gives a final count of n!/2. �
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Theorem 5.3 When m ∈ (−1,0), the signs of the vorticities in a collinear relative
equilibrium must be arranged as + − −+ (symmetric case only), or as + − +− or
−+−+ (when asymmetric solutions exist). Therefore, when m < 0, it is not possible
to have a collinear solution where both pairs of vortices with the same strength are
adjacent to each other.

Proof The symmetric case has already been analyzed at the start of this section. For
the asymmetric case, we note that

ζ(1) = −128(1 + 2m)(m + 2)2(m + 1)2

is strictly negative when m ∈ (−1/2,0). We also note that ζ(0) > 0 and the leading
coefficient of ζ(w) is always positive. Since ζ has only two positive roots for m ∈
(−1/2,0), it follows that one root is less than one and the other is larger than one.
(The two roots approach one as m → −1/2+.) The values of x2

1 and x2
2 must each

be roots of ζ(w). Because we are only considering asymmetric solutions, we have
|x1| < 1 and |x2| > 1 or vice versa. Therefore, when m ∈ (−1/2,0), the only possible
asymmetric orderings of vortices have signs arranged as + − +− or − + −+. �

6 Asymmetric Relative Equilibria

6.1 Eliminating Symmetric Solutions

In this section we study strictly planar relative equilibria that do not have a line of
symmetry. A major result proved here is that any convex solution with m > 0 or
any concave solution with m < 0 must contain a line of symmetry. We prove this by
saturating the Gröbner basis in order to eliminate any symmetric solutions, and then
showing the resulting system has no real solutions.

Let F̃ and G̃ be the Albouy–Chenciner and the unsymmetrized Albouy–Chenciner
equations in terms of sij = r2

ij , respectively, with λ′ = −1,Γ1 = Γ2 = 1, and Γ3 =
Γ4 = m �= −1. Let ẽCM be the Cayley–Menger determinant written in terms of sij =
r2
ij and let H̃ be the Dziobek equations with λ′ = −1. The polynomials F̃ , G̃, ẽCM,

and H̃ belong to the polynomial ring C[m,s12, s13, s14, s23, s24, s34].
We begin by finding a Gröbner basis for the ideal Is = 〈F̃ , G̃, ẽCM, H̃〉. In order to

accomplish this we first find a Gröbner basis GJs for the ideal Js = 〈F̃ , G̃, ẽCM〉 and
then we compute a Gröbner basis GIs for Is = 〈GJs , H̃〉. At this stage we saturate
with respect to the variables s13, s14, and s24, to eliminate possible solutions where
one of the mutual distances has zero length. We also saturate with respect to (s13–
s24), (s14–s23), (s13–s14), (s23–s24), (s13–s23), and (s14–s24). Due to Lemma 2.5 and
Eq. (11), saturating with respect to these differences is equivalent to eliminating any
symmetric solutions. We denote the resulting Gröbner basis as G̃Is .

Computing G̃Is with respect to an elimination order that eliminates all the vari-
ables except s12 and s34 yields the following system of two equations in two un-
knowns:

s34m + s12 − m − 1 = 0, s2
12 − 2s12s34 + s2

34 − 1 = 0.
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This system has the two solutions

(s12, s34) =
(

2m + 1

m + 1
,

m

m + 1

)

, (s12, s34) =
(

1

m + 1
,
m + 2

m + 1

)

, (22)

where one solution is sent to the other one by the transformation m → 1
m

and s12 ↔
s34. If we compute the Gröbner basis of G̃Is with respect to an elimination order that
eliminates all but one sij = x, we obtain a polynomial that is the product of the two
polynomials

p1 = 4
(
m2 + 2m + 1

)
x4 − 4

(
5m2 + 8m + 3

)
x3 + 2

(
16m2 + 21m + 7

)
x2

− 2
(
10m2 + 11m + 3

)
x + 4m2 + 4m + 1, and

p2 = 4
(
m2 + 2m + 1

)
x4 − 4

(
3m2 + 8m + 5

)
x3 + 2

(
7m2 + 21m + 16

)
x2

− 2
(
3m2 + 11m + 10

)
x + m2 + 4m + 4,

where x is one of s13, s14, s23 or s24. For the case when s12 or s34 is the only variable
not eliminated, we obtain the products

(ms12 + s12 − 1)(ms12 + s12 − 2m − 1), or

(ms34 + s34 − m)(ms34 + s34 − m − 2),

respectively. All the Gröbner basis computations were performed using SINGULAR

(Decker et al. 2011) and Sage (Stein et al. 2011).
Analyzing the polynomials p1 and p2 (which we do in the next section), one can

prove the following:

Lemma 6.1 For any m ∈ (−1,1), the polynomial p1 has no real positive roots. For
any m ∈ (−1,1), the polynomial p2 has four positive distinct real roots except for
m = 0, where one of the roots is repeated (at 1). If m ∈ [0,1], each root of p2 lies
in one of the intervals J1 = [0, 1

2 ], J2 = [ 1
2 ,1], J3 = [1, 3

2 ], and J4 = [ 3
2 ,5]. If m ∈

(−1,0), each root of p2 lies in one of the intervals K1 = [0, 1
2 ],K2 = [ 1

2 ,1],K3 =
[1, m+2

m+1 ] and K4 = [m+2
m+1 ,∞].

Using Lemma 6.1, we obtain the following fundamental result:

Theorem 6.2 Consider the four-vortex problem with vorticities Γ1 = Γ2 = 1 and
Γ3 = Γ4 = m.

1. For any m > 0, every convex relative equilibrium has a line of symmetry, and the
only possible strictly planar asymmetric configurations are concave with the two
vortices of smaller strength lying on the exterior triangle. If m = 1, all solutions
contain a line of symmetry.

2. For any m < 0, every concave relative equilibrium has a line of symmetry, and
the only possible strictly planar asymmetric configurations are convex with equal-
strength vortices necessarily adjacent.
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Proof First note that the case λ′ > 0 is necessarily excluded in the hypotheses of
the theorem. If m > 0, λ′ = −λ/Γ < 0 is guaranteed. If m < 0 and λ′ > 0, then the
configuration must be convex. Hence, we can assume that λ′ = −1.

If we compute a Gröbner basis of G̃Is that eliminates all the sij variables except
s12 and s13, we obtain several polynomials including

p3 = (ms12 − 2m + s12 − 1)(ms12 + s12 − 1)

and

p4 = −8ms4
13 + 8(ms12 + 3m − s12 + 1)s3

13 − 2
(
9ms12 − 4s2

12 + 14m − s12 + 5
)
s2

13

+ 2
(
7ms12 − 4s2

12 + 6m + s12 + 3
)
s13 − 3ms12 + 2s2

12 − 2m − s12 − 1. (23)

The roots of p3 are σ1 = 2m+1
m+1 and σ2 = 1

m+1 . Substituting σ1 into p4, clearing de-
nominators, and rescaling by a constant gives the value p1(s13), which is nonzero
for m ∈ (−1,1) by the first statement in Lemma 6.1. Substituting σ2 into p4, clear-
ing denominators, and rescaling by a constant gives the value p2(s13). For the case
m ∈ (−1,1), p2 has four distinct positive real roots. Thus, in order to have a geomet-
rically realizable solution, we must have s12 = 1/(m + 1) and s13 must be one of the
four positive roots of p2. From Eq. (22), we also have s34 = (m + 2)/(m + 1).

Since λ′ = −1, we have 1/
√−λ′ = 1 in Propositions 2.2 and 2.4. If m ∈ (0,1),

then s12 < 1 and s34 > 1. Since we have saturated with respect to all possible differ-
ences of the remaining four sij variables, the values of s13, s14, s23, s24 must all be
distinct roots of p2. By Lemma 6.1, two of these values are less than one, and two are
greater than one. By Proposition 2.4 part 1, the configuration cannot be convex. Since
we have saturated the Gröbner basis to eliminate symmetric solutions, it follows that,
for m ∈ (0,1), the only strictly planar, asymmetric configurations are concave. By
Proposition 2.2 part 1., vortices 3 and 4 (with equal strength m) lie on the outer tri-
angle, while either vortex 1 or 2 can lie in the interior of the concave configuration.
(The situation is reversed under the transformation m �→ 1

m
.)

For the special case m = 1, we have s12 = 3/2 and s34 = 1/2 or vice versa. If
s12 = 3/2 = σ1, then substitution into p4 yields the result that s13 is a root of p1. But
the only real roots of p1 when m = 1 are 1/2 and 3/2. Thus, we either have s12 = s13

or s34 = s13 and by Eq. (11), the configuration is necessarily a kite (a symmetric
configuration). If s12 = 1/2 = σ2, a similar argument with p2 replacing p1 also yields
a kite configuration. This completes the proof of part 1 of the theorem.

If m ∈ (−1,0), we have s12 > 1, s34 > 1. Taken together with Lemma 6.1, this
implies that four mutual distances are greater than one and two are less than one.
Therefore, from Propositions 2.2 and 2.4, it follows that the only real, positive so-
lutions to the system of equations given by G̃Is correspond to convex asymmetric
configurations where the equal-strength vortices are adjacent. This proves part 2 of
the theorem. �

Remark The fact that all solutions are symmetric in the case of four equal-strength
vortices was first proved by Albouy (see Sect. 5 in Albouy 1996).
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6.2 Proof of Lemma 6.1

In this section we analyze the polynomials p1 and p2 and prove Lemma 6.1. For p1,
we use Lemma 3.5, while for p2, we make appropriate choices of Möbius transfor-
mations.

Both p1 and p2 are polynomials of degree four. Moreover, if m > 0, their coef-
ficients have four sign changes, and thus they have either four, two or zero positive
real roots, according to Descartes’ rule of signs. The roots of the polynomials can
be obtained using Ferrari’s formula for quartic equations (Cardano 1545). However,
we can understand a great deal about the solutions by using the resolvent cubic and
Möbius transformations.

One important observation is that if we make the change m �→ 1
m

in the polynomial
p1, and clear the denominators, we obtain p2. In particular, this means that the roots
of p2 for m ∈ (0,1) are equivalent to the roots of p1 for m ∈ (1,∞). Hence, it suffices
to study the polynomials for |m| < 1.

Discriminants of p1 and p2 The discriminant of p1 is 256(m+1)4(5m+3)2(2m+
1)2(m − 1)2, which is strictly positive except for the m-values −1,−3/5,−1/2, and
1 where it vanishes. At m = −1, p1 reduces to a quadratic polynomial with repeated
roots at x = 1/2. For m = −3/5, p1 has only complex roots, while for m = −1/2,
p1 has a double root at x = 0. At m = 1, there are double real roots at x = 1/2 and
x = 3/2.

The discriminant for p2 is 256(m + 2)2(3m + 5)2(m + 1)4m2(m − 1)2 which is
strictly positive except for the m-values −2,−5/3,−1,0, and 1 where it vanishes.
Focusing on the values between −1 and 1, we find that, at m = −1, p2 reduces to
a quadratic polynomial with repeated roots at x = 1/2. For m = 0, p2 has a double
root at 1 and two other roots at (3 ± √

5)/2. At m = 1, p2 has double real roots at
x = 1/2 and x = 3/2. For all values of m ∈ (−1,1), except for m = 0, the four roots
of p2 are distinct.

Polynomial p1 After applying the shift x �→ x + (m + 1)(5m + 3)/(4(m + 1)2) to
remove the cubic term in p1, we compute the key coefficients of the shifted quartic
to be

p = −11m2 + 6m − 1

8(m + 1)2
, and

p2 − 4r = (m − 1)(5m + 3)(7m + 3)

16(m + 1)3
.

It is straightforward to check that either p > 0 or p2 − 4r < 0 (or both), for each
m-value in (−1,1). Using Lemma 3.5, it follows that the roots of p1 are all complex
for m ∈ (−1,1), except when m = −1/2, where 0 is a double root.

Polynomial p2: The case m ∈ [0,1] Consider the intervals J1 = [0, 1
2 ], J2 =

[ 1
2 ,1], J3 = [1, 3

2 ], and J4 = [ 3
2 ,5]. We show, that for each m ∈ [0,1], p2 has a root

in each of these intervals. The result follows from direct computation for m = 0 and
m = 1, noting that some of the roots are a shared endpoint of adjacent intervals.
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x-interval Möbius Transformation

J1 x = 1
2

u
u+1 , m = α

α+1

J2 x = u+ 1
2

u+1 , m = α
α+1

J3 x = 3
2 u+1
u+1 , m = α

α+1

J4 x = 5u+ 3
2

u+1 , m = α
α+1

Using the Möbius transformations given in the table above, after clearing the de-
nominators, we obtain the following four polynomials:

PJ1 = −(2α + 1)u4 − 2(2α + 1)u3 + 2
(
8α2 + 11α + 4

)
u2 + 4

(
12α2 + 17α + 6

)
u

+ 36α2 + 48α + 16,

PJ2 = 4α2u4 + 4
(
4α2 + α

)
u3 + 2

(
8α2 − α − 2

)
u2 − 6(2α + 1)u − 2α − 1,

PJ3 = −(18α + 5)u4 − 2(22α + 5)u3 + 2
(
8α2 − 13α − 2

)
u2 + 4α(4α − 1)u + 4α2,

PJ4 = 4
(
3969α2 + 3352α + 704

)
u4 + 4

(
1764α2 + 815α + 16

)
u3

+ 2
(
392α2 − 397α − 218

)
u2 − 2(134α + 45)u − 18α − 5.

Using Descartes’ rule of signs, it is straightforward to show that, for any α > 0,
each of the polynomials above has precisely one positive real root. The values at the
endpoints of each Ji can be determined by direct substitution. It follows that p2 = 0
has one solution in each of the intervals J1, J2, J3, and J4.

Polynomial p2: The Case m ∈ (−1,0) Consider the intervals K1 = [0, 1
2 ],K2 =

[ 1
2 ,1],K3 = [1, m+2

m+1 ], and K4 = [m+2
m+1 ,∞). We show that for each m ∈ (−1,0), p2

has a root in each of these intervals.

x-interval Möbius Transformation

K1 x = 1
2

u
u+1 , m = − 1

α+1

K2 x = u+ 1
2

u+1 , m = − 1
α+1

K3 x = 1+ m+2
m+1 u

u+1 , m = − 1
α+1

K4 x = u + m+2
m+1 , m = − 1

α+1

PK1 = (
α2 + 2α

)
u4 + 2

(
α2 + 2α

)
u3 − 2

(
4α2 + 5α + 2

)
u2

− 2
(
12α2 + 14α + 4

)
u − 4

(
4α2 + 4α + 1

)
,

PK2 = −4u4 + 4(α − 2)u3 + 2
(
2α2 + 7α − 2

)
u2 + 6

(
α2 + 2α

)
u + (

α2 + 2α
)
,
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PK3 = 4
(
4α4 + 12α3 + 9α2 + 2α

)
u4 + 8

(
6α4 + 17α3 + 11α2 + 2α

)
u3

+ 8
(
2α4 + 2α3 − 10α2 − 9α − 2

)
u2 − 8

(
α3 + 5α + 2

)
u − 4α2,

PK4 = −16α3u4 − 8
(
6α3 + 4α2)u3 − 8

(
4α3 + 5α2 + 2α

)
u2

+ 8
(
2α3 + 5α2 + 2α

)
u + 4

(
4α3 + 12α2 + 9α + 2

)
.

Using Descartes’ rule of signs, it is straightforward to show that, for any α > 0,
each of the polynomials above has one positive real root. Again, it is straightforward
to check the behavior at the endpoints of each interval by direct substitution. It follows
that p2 = 0 has one solution in each of the intervals K1,K2,K3, and K4.

6.3 The Variety of Asymmetric Configurations

In this section we study the strictly planar, asymmetric solutions to our problem and
show that there are exactly eight asymmetric solutions for each m ∈ (−1,1). We
restrict to the case λ′ = −1 since λ′ > 0 only leads to symmetric solutions (as shown
in Sect. 7.3) We first recall some definitions and theorems from algebraic geometry
(see Bochnak et al. 1998 and Cox et al. 2007 for more details).

Definition 6.3 Let A be a commutative ring.

1. An ideal I of A is said to be real if, for every sequence a1, . . . , ap of elements
of A, we have

a2
1 + · · · + a2

p ∈ I =⇒ ai ∈ I, for i = 1, . . . , p.

2. R
√

I is the smallest real ideal of A containing I and is called the real radical of the
ideal I .

Let k be a field. If I ⊂ k[x1, . . . , xn] is an ideal, we denote by V(I ) the set

V(I ) = {
(a1, . . . , an) ∈ kn : f (a1, . . . , an) = 0 for all f ∈ I

}
.

V(I ) is an affine variety. In particular if I = 〈f1, . . . , fs〉, then V(I ) = V(f1, . . . , fs).
If k is the field of real numbers R, we say that V(I ) is a real algebraic variety. Note
that while this terminology is common in algebraic geometry books, it is different
from the terminology frequently used in real algebraic geometry (see Bochnak et al.
1998, for example).

Definition 6.4 Let V ⊂ kn be an affine variety. Then we set

I(V ) = {
f ∈ k[x1, . . . , xn] : f (a1, . . . an) = 0 for all (a1, . . . an) ∈ V

}
.

I(V ) is an ideal and it is called the ideal of the variety V .

We are now ready to state a version of the Real Nullstellensatz:
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Theorem 6.5 (Real Nullstellensatz) Let k be a real closed field and I an ideal of
k[x1, . . . , xn]. Then I(V(I )) = R

√
I .

The dimension of an affine variety V ⊂ kn, denoted dimV , is the degree of the
affine Hilbert polynomial of the corresponding ideal I(V )⊂k[x1, . . . , xn] (see Cox
et al. 2007 for more details). This degree can easily be computed using SINGULAR.
In the case k = R, one needs to know the ideal of the variety, or by the Real Null-
stellensatz, the real radical of the ideal. The real radical can be computed using the
realrad.lib (Spang 2011) library of SINGULAR (Decker et al. 2011). More de-
tails about the algorithms can be found in the paper Spang (2008). We now apply the
above theory to our problem.

Theorem 6.6 Consider the ring R[s12, s13, s14, s23, s24, s34,m]. The asymmetric rel-
ative equilibria configurations form a one-dimensional real variety V ⊂ R

7.

Proof Consider the Gröbner basis GIs for the ideal Is and saturate with respect to s13,
s14, s24, (s13 − s24), (s14 − s23), (s13 − s14), (s23 − s24), (s13 − s23), and (s14 − s24),
as before. In addition, saturate with respect to (ms12 − 2m + s12 − 1) to eliminate
the case s12 = (2m + 1)/(m + 1) for which the solutions are complex. We obtain the
following polynomials:

f1 = s13 + s14 + s23 + s24 − 2s34 − 1,

f2 = s12 − s34 + 1,

f3 = s34m + s34 − m − 2,

f4 = 2s2
24 − s14s34 − s23s34 − 4s24s34 + 2s2

34 + 2s23,

f5 = 2s23s24 − 2s23 − 2s24 + s34,

f6 = 2s14s24 − s34,

f7 = 2s2
23 + s14s34 − 3s23s34 + 2s24 − s34,

f8 = 2s14s23 − s14s34 − s23s34 + s34,

f9 = 2s2
14 − 3s14s34 + s23s34 − 2s14 − 2s23 − 2s24 + 3s34 + 2.

Let I = 〈f1, . . . , f9〉. We want to find the dimension of the real variety V(I ). First,
we find I(V(I )) or R

√
I . This can be computed using the realrad.lib (Spang

2011) library of SINGULAR (Decker et al. 2011). However, in this case it turns out
that R

√
I = I , and hence f1, . . . , f9 are the generators of the real radical of I . The

degree of the affine Hilbert polynomial of R
√

I = I is one, and thus V(I ) is a one-
dimensional real algebraic variety. �

There are some important solutions that can be determined directly from equations
f1 = 0, . . . , f9 = 0 when m = 0 or m = 1. For m = 0, there are four solutions given
by

s34 = 2, s12 = 1, s14 = s24 = 1, s13, s23 = 3 ± √
5

2
(24)
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and

s34 = 2, s12 = 1, s13 = s23 = 1, s14, s24 = 3 ± √
5

2
. (25)

The points in (24) correspond to configurations where vortices 1,2, and 3 are
collinear and vortices 1,2, and 4 form an equilateral triangle. For one point, vor-
tex 2 lies between vortices 1 and 3, while for the other point, vortex 1 lies between
vortices 2 and 3. The points in (25) correspond to the same configurations, but with
vortices 3 and 4 interchanged. Although these solutions are not physically relevant,
they are significant geometrically since they correspond to “boundary” configurations
between the concave and convex solutions.

There are two solutions for the case m = 1, each with multiplicity two. They are
given by

s12 = s13 = s14 = 1

2
, s23 = s24 = s34 = 3

2
(26)

and

s12 = s23 = s24 = 1

2
, s13 = s14 = s34 = 3

2
. (27)

The point in (26) corresponds to a concave solution where vortices 2,3, and 4 are
located at the vertices of an equilateral triangle and vortex 1 is at the center. The point
in (27) is the same configuration, but with vortex 2 at the center. The fact that they
are double roots can be shown using Gröbner bases. These symmetric configurations
have not been eliminated because in the case of equal vorticities, there is an additional
symmetry that we did not exclude when saturating.

We now determine if the variety contains any singular points. First, we recall some
definitions and theorems.

Definition 6.7 Let V ⊂ kn be an affine algebraic variety. The Zariski tangent space
of V at p = (p1, . . . , pn), denoted by Tp(V ), is the variety

Tp(V ) = V
(
dp(f ) : f ∈ I(V )

)
,

where dp(f ) = ∑n
i=1

∂f
∂xi

(p)(xi − pi).

Clearly if I(V ) = 〈f1, . . . , fs〉 then Tp(V ) = V(dp(f1), . . . , dp(fs)), and it is the
translate of a linear subspace of kn. Recall that if V ⊂ kn is an affine variety, then V is
irreducible if and only if I(V ) is a prime ideal. Thus we have the following definition:

Definition 6.8 Let V ⊂ kn be an irreducible variety. A point p in V is nonsingular (or
smooth) provided that dimTp(V ) = dimV . In other words, if I(V ) = 〈f1, . . . , fs〉,
then p is nonsingular if and only if the rank of the Jacobian matrix J = [ ∂fi

∂xj
] is equal

to n − dim(V ). Otherwise, p is a singular point of V .

The notion of a Zariski tangent space is defined even at a singular point. However,
when V ⊂ R

n is an irreducible variety and p ∈ V is a nonsingular point, a neigh-
borhood of p in V is a C∞ submanifold of Rn, and the tangent space of V at z (in



72 J Nonlinear Sci (2014) 24:39–92

the C∞ sense) coincides with the Zariski tangent space. If p is singular, then the
dimension of Tp(V ) is bigger than the dimension of V .

Theorem 6.9 For −1 < m ≤ 1, the variety of strictly planar, asymmetric rela-
tive equilibria configurations has no singular points and hence it is a smooth one-
dimensional manifold.

Proof The Jacobian matrix of (f1, . . . , f9) is

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 1 1 −2 0
1 0 0 0 0 −1 0
0 0 0 0 0 m + 1 s34 − 1
0 0 −s34 −s34 + 2 4(s24 − s34) −s14 − s23 − 4(s24 − s34) 0
0 0 0 2s24 − 2 2s23 − 2 1 0
0 0 2s24 0 2s14 −1 0
0 0 s34 4s23 − 3s34 2 s14 − 3s23 − 1 0
0 0 2s23 − s34 2s14 − s34 0 −s14 − s23 + 1 0
0 0 4s14 − 3s34 − 2 s34 − 2 −2 −3s14 + s23 + 3 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Using Gaussian elimination we obtain the matrix

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 1 1
0 0 −s34 −s34 + 2
0 0 0 2(s24 − 1)

0 −1 0
1 −2 0

4(s24 − s34) −s14 − s23 − 4(s24 − s34) 0
2(s23 − 1) 1 0

0

q1 q2 0
0 m + 1 s34 − 1
0 0 q3

0 0 0
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where q1, q2, q3 are rational functions in the sij ,m variables. Note that if m �= 0,
then s24 �= 1 = √−λ′, by Propositions 2.2 and 2.4. Using a Gröbner basis with the
ordering m > s34 > s12 > s13 > s24 > s23 > s14, q1 simplifies to

2(4s14s23 − 1 − s14 − s23)

s14(s14 − s23)
(28)

on the variety, while q3 simplifies to 0. Due to the symmetry lemma, the denominator
of (28) cannot vanish since we are excluding symmetric solutions. Adding the numer-
ator of (28) to f1, . . . , f9 and computing a Gröbner bases with an ordering that elim-
inates all the sij variables produces a quadratic polynomial in m with roots at m = 1
or m = −5/3. It follows that, for the points on the variety with m ∈ (−1,0) ∪ (0,1),
the rank of the Jacobian matrix is 6. The specific points for m = 0 and m = 1 given
in Eq. (24) through (27) can be checked individually to verify that the rank of the
Jacobian matrix is 6 for these cases as well. Since dim(V ) = 1, by Definition 6.8 the
variety for −1 < m ≤ 1 has no singular points. It follows that it is a smooth mani-
fold. �
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Fig. 5 Projection of part of the
manifold of asymmetric
configurations onto the
ms23-plane. As m → −1,
s23 → ∞ along two branches
while s23 → 1

2 along the other
two branches

A projection of the smooth manifold of asymmetric relative equilibria onto the
ms23-plane is shown in Fig. 5. Note the crossing at (m = 0, s23 = 1) corresponding
to the two “boundary” points given by (25). Also note the double roots visible at
(m = 1, s23 = 1/2) and (m = 1, s23 = 3/2).

Theorem 6.10 For each value of m in (−1,1), there are exactly four (eight count-
ing reflected solutions) strictly planar, asymmetric relative equilibria configurations.
They are convex if m < 0 and concave if m > 0.

Proof The proof consists of showing that the system of equations f1 = 0, . . . , f9 = 0
has four solutions for each value of m in (−1,1). The convexity of the configuration
then follows from Theorem 6.2. The case m = 0 has already been proven directly. We
use an algorithm for the triangular decomposition of semi-algebraic systems. Such an
algorithm, given a system of equations and inequalities S, computes simpler systems
S1, . . . , Sk such that a point is a solution of the original system S if and only if it is a
solution of one of the systems S1, . . . , Sk . Each of these systems has a triangular shape
and remarkable properties: for this reason it is called a regular semi-algebraic system
and the set of the S1, . . . , Sk is called a full triangular decomposition of S. See Chen
et al. (2010) and references therein for some background. The algorithm is detailed in
Chen et al. (2010) and it is available in Maple15TM via the RealTriangularize
command of the RegularChains package.

For m ∈ (−1,0) ∪ (0,1), using the RealTriangularize command and im-
posing the constraint that all sij > 0, the triangular decomposition of the system
f1 = 0, . . . , f9 = 0 is

s12 − s34 + 1 = 0,

s13 + s14 + s23 + s24 − 2s34 − 1 = 0,

s34s14 + (s34 − 2)s23 − 2s2
24 + 4s24s34 − 2s2

34 = 0,

(2s24 − 2)s23 − 2s24 + s34 = 0,
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4s4
24 + (−8s34 − 4)s3

24 + (
4s2

34 + 6s34 + 4
)
s2

24 + (−4s2
34 − 2s34

)
s24 + s2

34 = 0,

(m + 1)s34 − m − 2 = 0.

Solving the last equation gives s34 = m+2
m+1 . Substituting this into the preceding equa-

tion and clearing denominators yields p2(s24). From Lemma 6.1 we know that p2 has
four distinct positive real roots for m ∈ (−1,0) ∪ (0,1). If we fix one such solution
for s24 and substitute into the first four equations of the system, the resulting system
can be written as Ax = b, where x = (s12, s13, s14, s23),

A =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 1 1
0 0 s34 (s34 − 2)

0 0 0 2(s24 − 1)

⎤

⎥
⎥
⎦

and b = [−1 + s34,−s24 + 2s34 + 1,2s2
24 − 4s24s34 + 2s2

34,2s24 − s34]T . Since the
matrix A is invertible, Ax = b has exactly one solution for every vector b. This proves
the theorem since it implies that the system f1 = 0, . . . f9 = 0 has four real positive
solutions. �

Remark Since the variety of asymmetric relative equilibria contains no singu-
lar points and the number of solutions is constant for −1 < m < 1, it fol-
lows that the convex configurations for m < 0 smoothly transform into con-
cave configurations as m increases through 0. The solutions at m = 0 consist-
ing of three collinear vortices supports this observation. An animation of this in-
teresting geometric bifurcation was created in Maple15TM and can be viewed at
http://mathcs.holycross.edu/~groberts/Research/vort-movies.html.

7 Symmetric Relative Equilibria

In this section we investigate all of the strictly planar, symmetric relative equilibria
in the four-vortex problem with Γ1 = Γ2 = 1 and Γ3 = Γ4 = m. The four possible
configurations are an isosceles trapezoid, a concave kite, a convex kite, or a rhombus.
When m = 0, it is possible to have a solution where precisely three of the four vortices
are collinear. We separate the kite configurations into two cases based on the sign
of λ′.

7.1 The Isosceles Trapezoid Family

Without loss of generality, suppose that the vortices are ordered sequentially around
an isosceles trapezoid, so that the lengths of the diagonals are given by r13 = r24 and
the congruent legs have length r14 = r23. Due to the symmetry of the configuration,
the four vortices lie on a common circle, that is, the isosceles trapezoid is a cyclic
quadrilateral. By Ptolemy’s theorem, we have

r2
13 = r2

24 = r12r34 + r2
14. (29)

http://mathcs.holycross.edu/~groberts/Research/vort-movies.html
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A choice of six mutual distances satisfying r13 = r24, r14 = r23, and Eq. (29) will also
satisfy eCM = 0.

In contrast to the Newtonian four-body problem, the isosceles trapezoid family
of four-vortex relative equilibria can be solved completely (by hand) in terms of the
vortex strength m (compare with Cors and Roberts 2012). Let x = r34/r12 and y =
r14/r12. Rather than assuming a specific scaling on the distances (e.g., λ′ = −1), we
will solve for x and y in terms of m. Using the symmetries of the configuration and
Eq. (29), Eq. (10) reduces to

2
(
y2 − x2)(y2 − 1

) + x
(
2y2 − x2 − 1

) = 0. (30)

This relation between x and y is both necessary and sufficient for the trapezoid to be
a relative equilibrium.

Focusing on the first and last columns of Eq. (9), the first and last equations are
easily satisfied due to symmetry. The middle four equations in (9) are equivalent
given that (30) holds. They determine a formula for m given by

m = x(1 − y2)

y2 − x2
, (31)

where we have used |Ai | = rjkrjlrkl/(4rc) for the area of a triangle circumscribed in
a circle of radius rc. Solving Eq. (31) for y2 and substituting into Eq. (30) leads to
the equation

x(1 − x)(1 + x)
(
x2(2m + 1) − m(m + 2)

) = 0. (32)

Since x represents the ratio of two distances, there are only two possibilities. If
x = 1, then Eq. (30) quickly gives y = 1 and the configuration is a square. The second
equation in (9) then gives m = 1 and all vortices must have the same strength. The
other possibility is that x2 = m(m+2)/(2m+1). Substituting this value into Eq. (31)
and solving for y2 yields

y2 = 1

2

(

m + 2 −
√

m(m + 2)

2m + 1

)

.

Note that the necessary condition x2 > 0 is satisfied only for m > 0 and −2 < m <

−1/2. In order for the expression for y2 to be real, we must be in one of these two
regimes. However, while y2 > 0 holds for m > 0, it is not satisfied on −2 < m <

−1/2. Therefore, there does not exist an isosceles trapezoid solution for the case
m < 0.

Theorem 7.1 There exists a one-parameter family of isosceles trapezoid relative
equilibria with vortex strengths Γ1 = Γ2 = 1 and Γ3 = Γ4 = m. The vortices 1
and 2 lie on one base of the trapezoid, while 3 and 4 lie on the other. Let α =
m(m + 2)/(2m + 1). If r13 = r24 are the lengths of the two congruent diagonals,
then the mutual distances are described by
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(
r34

r12

)2

= α,

(
r14

r12

)2

= 1

2
(m + 2 − √

α) and

(
r13

r12

)2

= 1

2
(m + 2 + √

α).

This family exists if and only if m > 0. The case m = 1 reduces to the square. For
m �= 1, the larger pair of vortices lie on the longer base.

Proof The formula for r2
13/r2

12 comes from Eq. (29). Substituting m = 1 into the
formulas above quickly gives r12 = r14 = r34 = r23 and r13 = r24 = √

2r12, a square.
The only other item that remains to be shown is the fact about the larger vortices lying
on the longer base. This follows since α > 1 if and only if m > 1. �

Remark

1. If 0 < m < 1, r12 is the longest base length and the formulas in the theorem give
r34 < r14 < r12 < r13. On the other hand, if m > 1, then r34 is the longest base
length and we deduce r12 < r14 < r34 < r13. Both cases agree with the conclusion
of statement 1 in Proposition 2.4.

2. It can be shown rigorously that the isosceles trapezoid relative equilibria are lin-
early stable for all m > 0 (Roberts 2013). In fact, the periodic solutions are actu-
ally nonlinearly stable as well (see Theorem 3.8 in Roberts 2013). In other words,
solutions starting sufficiently close to an isosceles trapezoid central configuration
will remain close to the corresponding relative equilibrium (as a set) for all for-
ward and backward time.

3. The case m > 1 is identical to the case 0 < m < 1 through a rescaling of the
vortex strengths and interchanging bodies 1 and 3, and bodies 2 and 4. Specifi-
cally, replacing m by 1/m and interchanging distances r12 and r34 leaves the three
equations for the ratios of mutual distances unchanged. The vortex strengths map
to Γ1 = Γ2 = 1 and Γ3 = Γ4 = 1/m < 1 under this transformation.

4. As m → 0, α → 0 and consequently r34 → 0. The limiting configuration is an
equilateral triangle with vortices 3 and 4 colliding. As m increases, so does α, and
the smaller base length r34 approaches the larger one r12 as m → 1. The ratio of
the diagonal to the larger base also increases monotonically with m. However, the
ratio of the leg to the larger base begins at 1 (m = 0) and decreases to a minimum
value of approximately 0.904781 before increasing back to 1 at the square config-
uration. This minimum value occurs at m ≈ 0.234658, which is the only positive
root of the quartic 8m4 + 19m3 + 9m2 + m − 1. Just as with the Newtonian case
(see Cors and Roberts 2012), the range of y is surprisingly small, confined to the
interval [0.904781,1].

7.2 Kite Configurations: λ′ < 0

In this section, we consider kite central configurations when λ′ < 0. Such configura-
tions contain two vortices that are symmetrically located with respect to an axis of
symmetry while the remaining two vortices lie on the axis of symmetry. The con-
figuration formed by the vortices can either be concave or convex. In this section,
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we focus on configurations with only one line of symmetry. Those configurations
with two lines of symmetry, i.e., the rhombus configurations, are studied in detail in
Sect. 7.4.

Our goal is to count the number of kite configurations as m varies and describe the
type of possible configurations. Recall that F̃, G̃, ẽCM and H̃ represent the Albouy–
Chenciner equations, the unsymmetrized Albouy–Chenciner equations, the Cayley–
Menger determinant and the Dziobek equations, respectively, in terms of the variables
sij = r2

ij , with λ′ = −1. Denote the complete system of these equations as Ẽ . Our goal
is to prove the following theorem.

Theorem 7.2 For each value of m ∈ (−∞,−2)∪ (− 1
2 ,0)∪ (0,∞), system Ẽ has ex-

actly four (real, positive) solutions that correspond to symmetric kite configurations.
If m ∈ (0,∞), such configurations are concave. If m ∈ (− 1

2 ,0), then there are two
convex configurations with Γ3 and Γ4 on the axis of symmetry, and two concave ones
with Γ1 and Γ2 on the axis of symmetry. If m ∈ (−∞,−2), the situation is reversed
and there are two concave configurations with Γ3 and Γ4 on the axis of symmetry,
and two convex ones with Γ1 and Γ2 on the axis of symmetry. For m = 1, the system
has exactly four (real positive) solutions that correspond to an equilateral triangle
with a vortex at the center. There are no other strictly kite configurations with λ′ < 0
for other values of m.

Remark The exact count on the number of kite solutions given in Table 1 is precisely
twice the values expressed in the theorem. This is due to the fact that each solution
found can be reflected about the axis of symmetry, a transformation that does not
change the mutual distances rij , but does alter the positions xi .

We have two possibilities: either vortices 3 and 4 lie on the axis of symmetry
or vortices 1 and 2 do. It is convenient to study the two cases separately, since the
conditions imposed by the symmetry are different. The first case will be explored
in Lemma 7.3, and the second in Lemma 7.4. The proof of Theorem 7.2 follows
immediately from the two lemmas.

Let us consider the first case. If vortices 3 and 4 lie on the axis of symmetry, then
s23 = s13 and s24 = s14. We compute a Gröbner basis for the ideal 〈F̄, Ḡ, ēCM, H̄ 〉,
where F̄, Ḡ, ēCM, H̄ are obtained from F̃ , G̃, ẽCM and H̃, respectively, by impos-
ing the conditions s23 = s13 and s24 = s14. Then we saturate with respect to s13–
s14, in order to exclude the rhombus configurations. We also saturate with respect to
s12, s13, s14, s34, and m. This computation yields the following ten polynomials:

g1 = ms34 + s13 + s14 + s34 − m − 2,

g2 = ms13 + ms14 + s12 + s13 + s14 + s34 − 3m − 3,

g3 = 2s12s34 − 2s13s34 − 2s14s34 + 2s2
34 − s12 + 2s13 + 2s14 + s34 − 3,

g4 = 2s13s14 − s13 − s14 + s34,

g5 = 2s2
13 + 2s2

14 − 2s13s34 − 2s14s34 + s12 − 4s13 − 4s14 + s34 + 3,

g6 = 2s12s13 + 2s12s14 − ms12 − 2s12 − s13 − s14 + s34,
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g7 = m2s12 + 2s2
12 + 2s13s34 + 2s14s34 − 2s2

34 − 3ms12 − 4s12

− s13 − s14 − 2s34 + 2m + 4,

g8 = 2ms2
14 + 2s12s14 + 2s2

14 + 2s14s34 − 6ms14 − s12 + s13 − 5s14 − s34

+ 2m + 1,

g9 = 4s3
14 − 4s2

14s34 + 2s12s14 − 10s2
14 − 2s13s34 + 2s14s34 + 2s2

34 − s12

+ s13 + 7s14 + 2s34 − 3,

g10 = 4s12s
2
14 − 2ms12s14 − 4s12s14 − 2s2

14 − 2s13s34 + 2s2
34 + ms12 + s12

+ 2s13 + 2s14 + s34 − 3.

Let us denote the corresponding system of equations g1 = 0, . . . , g10 = 0 as G. Then
the positive solutions of G give the symmetric kite configurations described above.
An exact count of these solutions is described in the following lemma.

Lemma 7.3 For each value of m ∈ (0,1), system G has exactly four real pos-
itive solutions corresponding to concave configurations. For each value of m ∈
(−∞,−2)∪ (− 1

2 ,0), system G has exactly two real positive solutions. Such solutions
correspond to convex configurations if m ∈ (− 1

2 ,0) and to concave configurations if
m ∈ (−∞,−2). For m = 1, system G has exactly two real positive solutions corre-
sponding to an equilateral triangle with either vortex 3 or 4 at the center. There are
no positive real solutions for other values of m.

Proof Computing a full triangular decomposition of system G with the positivity
conditions s12 > 0, s13 > 0, s14 > 0, and s34 > 0, we obtain five simpler systems. If
m = 1, we have the following two systems:

T1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2s12 − 3 = 0,

2s13 − 3 = 0,

2s14 − 1 = 0,

2s34 − 1 = 0,

T2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2s12 − 3 = 0,

2s13 − 1 = 0,

2s14 − 3 = 0,

2s34 − 1 = 0.

If m = 0, we have the following two systems:

T3 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s12 − 1 = 0,

s13 − 1 = 0,

4s14 − 1 = 0,

4s34 − 3 = 0,

T4 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s12 − 1 = 0,

4s13 − 1 = 0,

s14 − 1 = 0,

4s34 − 3 = 0.

(33)
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If m ∈ (−∞,−2) ∪ (−1/2,0) ∪ (0,1), we obtain the system

T5 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s12 + (−m2 − 2m)s34 − 1 + m2 = 0,

s13 + s14 + (m + 1)s34 − 2 − m = 0,

2s2
14 + ((2m + 2)s34 − 4 − 2m)s14 + (−2 − m)s34 + m + 2 = 0,

(4 + 6m + 2m2)s2
34 + (−3 − 3m2 − 6m)s34 + 2m + m2 = 0.

The case m = 1 is straightforward, since T1 and T2 each have a unique solution
corresponding to an equilateral triangle with either vortex 3 or 4 at the center. The
case m = 0, although physically meaningless, has two important solutions that divide
the concave configurations from the convex ones. In the first solution, vortex 4 is
collinear with vortices 1 and 2, lying equidistant from each of them. Vortex 3 forms an
equilateral triangle with vortices 1 and 2. The second solution for m = 0 is the same
configuration with vortices 3 and 4 interchanged. It remains to study the solutions of
system T5.

• Solutions of T5 with s34 > 0 and s14 > 0

The first two equations of T5 are linear in s12 and s13, so that to each solution
(s14, s34) of the last two equations correspond one solution (s12, s13, s14, s34) of T5,
provided that the determinant of the matrix of the coefficients of the linear system
is not zero. Hence, we focus our attention on the last two equations of T5. Let A =
2(2 + 3m + m2), B = −3(m + 1)2, and C = m(2 + m). Then the last equation of T5

can be written as

q1(s34) = As2
34 + Bs34 + C = 0

and can be viewed as a parametric equation of a parabola. Clearly B < 0 for all
m �= −1, and A > 0 for m ∈ (−∞,−2)∪(−1,∞). Thus A > 0, B < 0 on the domain
where T5 is valid. The vertex of the parabola has coordinates

(

− B

2A
,q1

(

− B

2A

))

=
(

3(m + 1)2

2(2 + 3m + m2)
,−1

8

(m − 1)(m2 − 4m − 9)

m + 2

)

.

It is easy to see that − B
2A

> 0 and q1(− B
2A

) < 0 in the interval of interest, and hence
the equation has two real solutions for each value of m ∈ (−∞,−2) ∪ (−1/2,0) ∪
(0,1). Since C > 0 for m ∈ (−∞,−2)∪(0,∞) and C < 0 for m ∈ (−2,0), it follows
that the equation has two positive solutions for m ∈ (−∞,−2) ∪ (0,1) and only one
positive solution for m ∈ (−1/2,0).

Let us denote as β1 and β2 (with β1 < β2) the (real) solutions of q1(s34) = 0. Then
through a standard analysis it is possible to find bounds for β1 and β2. Such bounds
are summarized in the table below.

Solutions m ∈ (−∞,−2) m ∈ (− 1
2 ,0) m ∈ (0,1)

β1 0 < β1 < 1
2 β1 < 0 0 < β1 < 1

2
β2 β2 > 1 0 < β2 < 1 0 < β2 < 1
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Now consider the third equation of system T5. Let A′ = 2, B ′ = (2(m + 1)s34 −
4 − 2m), and C′ = (m + 2)(1 − s34). Then this equation takes the form

q2(s14) = A′s2
14 + B ′s14 + C′ = 0.

Since this is a quadratic equation in s14, there are going to be two solutions for each
s34 and m. We will denote the (real) solutions corresponding to s34 = β1 as β1

1 and β2
1

(with β1
1 < β2

1 ), and the ones corresponding to s34 = β2 as β1
2 and β2

2 (with β1
2 < β2

2 ).
The vertex of this parabola has coordinates

(

− B ′

2A′ , q2

(

− B ′

2A′

))

=
(

(m + 1)(1 − s34) + 1

2
,−1

2
(m + 1)2s2

34 + m(m + 2)s34 − m

2
(m + 2)

)

.

(34)

We can then view the ordinate of the vertex, denoted as r(s34), as a parabola with
coefficients in m:

r(s34) = −1

2
(m + 1)2s2

34 + m(m + 2)s34 − m

2
(m + 2) = A′′s2

34 + B ′′s34 + C′′ = 0.

The coordinates of the vertex of r(s34) are

(

− B ′′

2A′′ , r
(

− B ′′

2A′′

))

=
(

m(m + 2)

(m + 1)2
,−1

2

m(m + 2)

(m + 1)2

)

.

Case I: m ∈ (0,1)

Since − B ′′
2A′′ > 0, r(− B ′′

2A′′ ) < 0, and A′′ < 0 for m ∈ (0,1), it follows that

q2(− B ′
2A′ ) < 0 for m ∈ (0,1). Consequently, since C′ > 0 in the same interval, q2 = 0

has two positive solutions corresponding to each solution of q1 = 0 for m ∈ (0,1). In
other words, there are four (positive) possible values for s14, namely β1

1 > 0, β2
1 > 0,

β1
2 > 0, and β2

2 > 0.
Case II: m ∈ (− 1

2 ,0)

For m ∈ (− 1
2 ,0), we have A′ > 0 and C′ > 0. This implies that corresponding to

s34 = β2, there are either two real positive solutions or no real solutions. We want
to show that there are two positive real solutions. Clearly − B ′′

2A′′ < 0, r(− B ′′
2A′′ ) >

0, A′′ < 0, and C′′ > 0 for m ∈ (− 1
2 ,0), so that r = 0 has one positive and one

negative root. If we show that the positive root is less than s34 = β2, then it follows
that q2(− B ′

2A′ ) < 0, and consequently q2 = 0 has two positive solutions when s34 = β2

(i.e., β1
2 > 0 and β2

2 > 0).
Subtracting β2 from the positive root of r = 0 yields

 = −(−m3 − 7m2 − 4xm + ym − 7m − 8x + y + 3)

4(m + 2)(m + 1)2
,
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where x = √−m(m + 2), and y = √
(m − 1)(m + 1)(m2 − 4m − 9). Numerically it

is easy to see that  < 0 for m ∈ (− 1
2 ,0). However, we proceed more rigorously. Tak-

ing the numerator of the expression above and squaring the expressions for x and y

yields three polynomials. Computing a lex Gröbner basis for these three polynomials,
we obtain

m
(
5m3 + 7m2 + 3m + 9

)
(m + 2)2(m + 1)2

as one of the basis elements. It is trivial to see that this polynomial has no roots in
[− 1

2 ,0], that (0) < 0, and that (− 1
2 ) < 0. Since  is continuous on [−1/2,0], we

deduce that  < 0 for m ∈ (− 1
2 ,0), as desired.

Case III: m ∈ (−∞,−2)

If s34 = β1 and m ∈ (−∞,−2), then C′ < 0. Since A′ > 0, it follows that q2 = 0
has one positive and one negative real solutions corresponding to β1. If s34 = β2

and m ∈ (−∞,−2), then C′ > 0. Since r(− B ′′
2A′′ ) < 0 and A′′ < 0 it follows that

q2(− B ′
2A′ ) < 0. This together with the fact that − B ′

2A′ > 0, A′ > 0 and C′ > 0 implies
that, corresponding to β2, q2 = 0 has two real positive solutions, (i.e., β1

2 > 0, and
β2

2 > 0).

• Solutions of T5 with s34 > 0, s14 > 0, and s13 > 0

We now study which solutions among the ones found above have s13 > 0. The
resultant of the second and third equations of T5 with respect to s12 is

R = 2s2
13 + (

(2m + 2)s34 − 2m − 4
)
s13 + (−2 − m)s34 + m + 2.

If s13 is replaced with s14, this polynomial transforms into the one that appears in
the third equation of T5. Hence our discussion regarding s14 applies to s13. Note that
since we saturated with respect to s13 − s14, every solution must have s13 �= s14. Since
R = 0 has two solutions for each m and s34, when s14 is one such solution, s13 must
be the other.

• Solutions of T5 with s34 > 0, s14 > 0, s13 > 0, and s12 > 0

We now study which solutions among the ones found above have s12 > 0. Con-
sider the first equation of T5 and rewrite it in the form

s12 = (
m2 + 2m

)
s34 + 1 − m2. (35)

This equation has a unique solution for each value of s34 and m. Solutions corre-
sponding to s34 = βi will be denoted αi . We can view this expression as defining a
function of the two variables m and s34. The sign of this function, i.e., the sign of s12,
is summarized in Fig. 6. As mentioned earlier, the last equation of T5 gives s34 = β1
or s34 = β2, and when βi > 0, we have 0 < s34 < 1 for m ∈ (− 1

2 ,0) ∪ (0,1). Hence
s12 > 0 for any positive solution of q1(s34) = 0.

The situation is a bit more delicate when m ∈ (−∞,−2). In this case, β2 > 1, and
thus we cannot arrive at a definitive conclusion just looking at Fig. 6. However, using
standard methods, one can prove that the function of m, defined by

d(m) = β2(m) − m2 − 1

m(m + 2)
,
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Fig. 6 This figure summarizes
the analysis of the sign of s12.
The gray areas represent regions
where s12 > 0. The white areas
represent regions where s12 < 0.
Along the solid lines s12 = 0

is always positive (where the graph of f̂ (m) = m2−1
m(m+2)

is the boundary of the gray
region in Fig. 6 in the interval (−∞,−2)). Thus, β2 lies in the region where s12 > 0
when m ∈ (−∞,−2). Consequently, there are always positive solutions of T5 corre-
sponding to β2. On the other hand, 0 < β1 < 1

2 for m ∈ (−∞,−2), and thus there are
no positive solutions of T5 corresponding to β1 in this interval.

In summary, we have shown that the solutions (s12, s13, s14, s34)
T with all compo-

nents positive have the form

⎡

⎢
⎢
⎣

α1

β2
1

β1
1

β1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

α1

β1
1

β2
1

β1

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

α2

β2
2

β1
2

β2

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

α2

β1
2

β2
2

β2

⎤

⎥
⎥
⎦ ,

for m ∈ (0,1), while they have the form

⎡

⎢
⎢
⎣

α2

β2
2

β1
2

β2

⎤

⎥
⎥
⎦ ,

⎡

⎢
⎢
⎣

α2

β1
2

β2
2

β2

⎤

⎥
⎥
⎦

for m ∈ (−∞,−2) ∪ (− 1
2 ,0).

We are left with deciding which solutions are convex and which are concave. For
m ∈ (0,∞), it follows from the main result in Albouy et al. (2008) that, if the kite
is convex, it must be a rhombus. Since the rhombus case was excluded, these solu-
tions correspond to concave configurations. For m ∈ (− 1

2 ,0), we have s34 = β2 < 1.
However, according to Proposition 2.2, since λ′ = −1, the interior side connecting
equal vorticities in a concave configuration is greater than 1. Hence, the configu-
rations are, in this case, convex. For m ∈ (−∞,−2) we have s34 = β2 > 1. Fur-
thermore, substituting s34 = β2(m) into Eq. (35), we obtain an expression that is a
function of m alone. Examining this function, it is easy to show that s12 = α2(m) < 1
for all m ∈ (−∞,0). Thus, from Propositions 2.2 and 2.4, it follows that the solu-
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tions correspond, in this case, to concave configurations. This completes the proof of
Lemma 7.3. �

We now consider the other case, where vortices 1 and 2 lie on the axis of
symmetry. We compute a Gröbner basis for the ideal 〈F̄ ′, Ḡ′, ē′

CM, H̄ ′〉, where
F̄ ′, Ḡ′, ē′

CM, H̄′ are obtained from F̃ , G̃, ẽCM and H̃, respectively, by imposing the
conditions s14 = s13 and s24 = s23. We saturate with respect to s13 − s23 in order to
exclude the rhombus configurations. We also saturate with respect to s12, s13, s23, s34,
and m. This computation yields a polynomial system that we will call G1. Then we
can prove the following lemma.

Lemma 7.4 For each value of m ∈ (1,∞), system G1 has exactly four real pos-
itive solutions corresponding to concave configurations. For each value of m ∈
(−∞,−2) ∪ (− 1

2 ,0), system G1 has exactly two real positive solutions. Such solu-
tions correspond to concave configurations if m ∈ (− 1

2 ,0), and to convex configura-
tions if m ∈ (−∞,−2). For m = 1, system G1 has exactly two real positive solutions
corresponding to an equilateral triangle with either vortex 1 or 2 at the center. There
are no positive real solutions for other values of m.

Proof Computing a full triangular decomposition of G1, with the positivity condi-
tions s12 > 0, s13 > 0, s23 > 0, and s34 > 0, we decompose G1 into three simpler
systems S1, S2, and S3. For m = 1, we have two systems, S1 and S2. They are linear,
and each of them has a unique solution corresponding to an equilateral triangle con-
figuration with vortex 1 or 2 at the center. For m ∈ (−∞,−2) ∪ (− 1

2 ,0) ∪ (1,∞),
we obtain a third system S3. This last system, possibly after computing a lexi-
cographic Gröbner basis, can be reduced to T5 by performing the transformation
(m, s12, s13, s23, s34) �→ ( 1

m
, s34, s14, s13, s12) and clearing the denominators. This

transforms each of the four polynomial equations in S3 to the equations of T5. Con-
sequently, the proof follows from Lemma 7.3. �

Remark

1. The proofs of Lemmas 7.3 and 7.4 yield some interesting information on the type
of kite central configurations. For example, when m ∈ (0,1), there are solutions
only when the smaller strength vortices (3 and 4) are on the line of symmetry.
In this case, there are two geometrically distinct concave configurations for each
choice of the central vortex. As m → 0+, one configuration has r34 → 0 (vortices
3 and 4 colliding), while the shape of the exterior triangle becomes equilateral.
The other configuration is limiting on the solutions of the two systems in (33),
where three of the vortices are collinear. Although the former Kite34 configuration
disappears when m < 0, the latter configuration becomes convex. In fact, applying
the implicit function theorem to system T5 at m = 0 and at either solution of (33),
we can prove rigorously that the latter concave solutions transform smoothly into
the convex solutions as m decreases through 0. The convex Kite34 configurations
that exist for −1/2 < m < 0 have three vortices very close to being collinear, and
as m → −1/2+, r34 → ∞. Animations of the Kite34 configurations are available
at http://mathcs.holycross.edu/~groberts/Research/vort-movies.html.

http://mathcs.holycross.edu/~groberts/Research/vort-movies.html
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2. As described in the introduction, the equilateral triangle with a central vortex bi-
furcates into both concave kite configurations and asymmetric concave configura-
tions as m decreases through m = 1. The fact that this particular solution shows up
in both Sects. 6.3 and 7.2 is hardly surprising. In fact, when solving the Albouy–
Chenciner equations for m = 1 without any restrictions on the variables, this solu-
tion occurs four times with a multiplicity of four. The Hessian matrix D2(H +λI)

evaluated at this solution has a null space of dimension 2 (excluding the “trivial”
vector in the direction of rotation). One can check that there are vectors in the
null space corresponding to both a symmetric and asymmetric perturbation of the
solution. In fact, the symmetric perturbation gives rise to the concave kite config-
urations described above. The central configuration consisting of four equal vor-
tices on an equilateral triangle with a vortex at the center is a highly degenerate
solution.

7.3 Kite Configurations: λ′ > 0

In Sect. 2.1 we observed that, if the vorticities have different signs, we could have
central configurations with λ′ > 0. In this case, taking Γ1 = Γ2 = 1 and Γ3 = Γ4 =
m < 0, the configuration is necessarily convex with vortices 1 and 2 on one diagonal
and vortices 3 and 4 on the other. In this section, we first show that these convex
solutions must contain a line of symmetry. Based on the main result in Albouy et al.
(2008) (applicable to our problem only when m > 0), we might expect each solution
to contain two lines of symmetry, forming a rhombus. We show here that this is
not necessarily true. When λ′ > 0 and m ∈ (m∗,−1/2), where m∗ ≈ −0.5951, there
exists a family of convex kite central configurations that are not rhombi. There does
exist a family of rhombi when λ′ > 0, as discussed in Sect. 7.4. In fact, this family of
rhombi undergoes a pitchfork bifurcation at m = m∗ that results in the convex kites.

Proposition 7.5 Let Γ1 = Γ2 = 1 and Γ3 = Γ4 = m < 0. Any strictly planar solution
to the Albouy–Chenciner equations with λ′ = 1 must possess a line of symmetry.

Proof The type of computations required are very similar to those used in Sects. 6.1
and 6.3. Consider the Albouy–Chenciner and the unsymmetrized Albouy–Chenciner
equations together with the Cayley–Menger determinant and Dziobek equations with
the normalization λ′ = 1. Take a Gröbner basis of the ideal generated by such equa-
tions and saturate with respect to some of the variables to eliminate possible solutions
where one of the mutual distances has zero length. Then, saturating with respect to the
differences (s13–s24), (s23–s14), (s13–s14), (s23–s24), (s13–s23), and (s14–s24) yields a
system of 12 polynomial equations. Analyzing this system by the method of triangu-
lar decomposition of semi-algebraic systems (with the inequalities sij > 0) yields an
empty triangular system. Therefore, due to the saturation and the Symmetry Lemma,
there are no asymmetric solutions in this case. �

To find the solutions with λ′ > 0, we impose the symmetry on the configuration
and use Eq. (7) since the areas Ai are easily computable. Suppose that vortices 1
and 2 are on the axis of symmetry and set r14 = r13 and r24 = r23. We impose the
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scaling r34 = 1 rather than choose λ′ = 1. Introduce two new variables x and y mea-
suring the distance between the intersection of the two diagonals and vortices 1 and 2,
respectively. Thus, we have the simple geometric equations

x2 + 1

4
= r2

13, y2 + 1

4
= r2

23 and x + y = r12. (36)

Equations (36) taken together with r34 = 1 imply that the Cayley–Menger determi-
nant eCM vanishes.

Under this setup, convex configurations correspond to x > 0 and y > 0, while
concave configurations have xy < 0. The oriented areas of the four triangles are given
by A1 = y/2, A2 = x/2 and A3 = A4 = −r12/4, where the signs are taken without
loss of generality. Note that one of the Dziobek equations in (8) is automatically
satisfied. The other equation yields an expression for λ′ given by

λ′ = r2
13r

2
23 − r2

12

r2
12(r

2
13 + r2

23) − r2
13r

2
23(r

2
12 + 1)

.

Equations (7), the formula for λ′ and Eq. (36) yield a polynomial system in the
variables r12, r13, r23, x, y,λ′ and m. We then saturate this system with respect to
r13, r23, r13 − r23, and r13 + r23 to eliminate the rhombus solutions and ensure that
the mutual distance variables are nonzero. Denote the resulting polynomial system as
Pkite. Analyzing Gröbner bases of the ideal generated by Pkite with different elimi-
nation orderings yields the following theorem. Recall that m∗ ≈ −0.5951 is the only
real root of the cubic 9m3 + 3m2 + 7m + 5.

Theorem 7.6 For m∗ < m < −1/2, there exist four convex kite configurations with
vortices 1 and 2 on the axis of symmetry. These solutions have λ′ > 0 and are not
rhombi. There are no other strictly kite solutions (with vortices 1 and 2 on the axis of
symmetry) with λ′ > 0 and m < 0.

Proof Let Gkite be the Gröbner basis of the ideal generated by Pkite with respect to
the lex order where r23 > r13 > r12 > λ′ > y > x > m. The first element in Gkite is
an even eighth-degree polynomial in x with coefficients in m. Letting z = x2, this
polynomial is given by

ζm(z) = 256m2(m + 2)(2m + 1)2z4 − 256m
(
9m4 + 23m3 + 17m2 − m − 3

)
z3

+ (
1728m5 + 3136m4 + 992m3 − 384m2 + 64m + 128

)
z2

+ (−432m5 − 336m4 + 48m3 − 80m2 + 16m + 64
)
z + (m + 2)3.

Computing a Gröbner basis with the same ordering of variables except that x > y >

m yields the same polynomial with z = y2. The discriminant of ζm is a positive mul-
tiple of

m4(m + 1)3(2m + 1)
(
9m3 + 3m2 + 7m + 5

)(
9m2 + 4m − 1

)2
(m − 1)2(qk(m)

)2
,
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where qk(m) = 2m5 + 8m3 + 14m2 + 4m − 1. Note that the discriminant vanishes
at m = m∗. It also vanishes at m = −1/2, where ζm(z) becomes a cubic polynomial
with roots 3/4 and −1/4 (multiplicity 2). It is straightforward to check that the dis-
criminant is strictly negative for m∗ < m < −1/2. Consequently, ζm(z) has precisely
two real roots for each m-value in this interval.

To see that these roots are always positive, we first use resultants to compute the
repeated root of ζm(z) when m = m∗. This yields the value z∗ ≈ 1.9566, the only root
of the cubic cu(z) = 320z3 − 656z2 + 60z − 3. Next consider the ideal in C[z,m]
generated by the system {ζm, cu}, which has (z∗,m∗) in its variety. Computing a
Gröbner basis for this ideal which eliminates z, we obtain a polynomial in m that
has no roots for m∗ < m ≤ −1/2. Since ζm(z∗) < 0 when m = −1/2, it follows
that ζm(z∗) < 0 for any m ∈ (m∗,−1/2). Then, since the constant term and leading
coefficient of ζm are both positive for m∗ < m < −1/2, the two real roots of ζm must
be positive.

Choose x to be the positive square root of one of the roots of ζm. The second
element in the Gröbner basis Gkite is linear in y, and the coefficient of y is nonzero
for m∗ < m < −1/2. Thus, by the Extension Theorem, we can extend a solution
(x,m) of ζm(x) = 0 to a unique partial solution (y, x,m), where y must be real. By
considering the other polynomials in Gkite, three of which are given by Eq. (36), the
Extension Theorem repeatedly applies to extend (y, x,m) to a unique full solution of
system Pkite where x, r12, r13, r23 are all positive and r13 �= r23. As expected, many
of the elements in Gkite featuring the saturation variable for r13 − r23 have a leading
coefficient that is a multiple of the key cubic 9m3 + 3m2 + 7m + 5.

To see that λ′ is positive, we compute a Gröbner basis for Pkite which eliminates
all variables except λ′ and m. The first element in this Gröbner basis, a quadratic
polynomial in λ′ with coefficients in m, is

2m2(m + 1)λ′2 + (4m − 1)(m + 1)2λ′ + m(m + 2)(2m + 1). (37)

It is straightforward to show that the roots of this quadratic are real and positive for
m∗ < m < −1/2. Consequently, λ′ > 0 and the configuration corresponding to the
solution guaranteed by the Extension Theorem is convex. Therefore, y > 0 is also
ensured, and by symmetry, y must be the positive square root of the remaining real
root of ζm. Since we have saturated to eliminate the rhombus solutions, we must
have x �= y. Thus, there are two solutions: one where x >

√
z∗ > y > 0, and one

where y >
√

z∗ > x > 0. The full count of four solutions comes from reflecting each
of these solutions about the axis of symmetry (or simply interchanging vortices 3
and 4). This proves the first part of the theorem.

To see that there are no other solutions (other than a rhombus) with λ′ > 0, first
consider the case m ∈ (−1/2,0). According to Eq. (37), the two possible choices for
λ′ are real, with opposite sign. Denote the larger, positive root as λ′+ and suppose
there was a real solution to system Pkite with λ′ = λ′+ > 0. Since the quadratic (37) is
strictly negative when λ′ = 3 and m ∈ (−1/2,0), we can assume that λ′+ > 3. Next,
the top two equations in (7) imply that

4m2xy
(
1 + λ′) = 1 + λ′r2

12. (38)
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If our real solution has λ′ > 0, then it is convex and xy > 0. Since λ′+ > 3, we have

1 + λ′+
(
x2 + y2) + xy

(
λ′+ − 1

)
> 0.

Taking m ∈ (−1/2,0), this in turn implies that

4m2xy
(
1 + λ′+

)
< xy

(
1 + λ′+

)
< 1 + λ′+(x + y)2,

which violates Eq. (38). Therefore, any real solution for m ∈ (−1/2,0) must have
λ′ < 0.

Recall that, for m = −1/2, ζm reduces to a cubic polynomial with only one
positive root at ζ = 3/4. Therefore, the only possible solution to system Pkite at
m = −1/2 has x = y = √

3/2, a rhombus solution. At m = m∗, ζm has only one
positive root at z∗ (multiplicity two), which also implies that x = y. For the case
−1 < m < m∗, the discriminant of ζm is positive; however, using Lemma 3.5 it is
straightforward to check that all the roots of ζm are complex. Hence there are no real
solutions to system Pkite when −1 < m < m∗.

For m < −1, the discriminant of ζm is negative so there are two real roots. To
determine their sign, we note that ζm(−1/4) = 128m3(m + 1)(2m + 1) is strictly
negative for −2 < m < −1. Since both the leading coefficient and the constant term
of ζm are positive when −2 < m < −1, it follows that the real roots of ζm are neg-
ative in this case, and there are no real solutions to system Pkite. For m < −2, the
signs of the leading coefficient and constant term both flip to become negative. Since
ζm(3/4) = −128(m − 1)(2m + 1)2 is strictly positive when m < −2, it follows that
ζm has two positive real roots. However, examining the roots of the quadratic in
Eq. (37), we see that λ′ < 0 whenever m < −2. Finally, when m = −2, ζm reduces
to a cubic with only one real root at zero. Thus, we have shown that, for m < 0 and
m �∈ (m∗,−1/2), there are either no real solutions or only solutions with λ′ < 0. This
completes the proof of Theorem 7.6. �

Remark

1. Since Theorem 7.6 applies for all m < 0, we do not need to consider the case
with vortices 3 and 4 on the axis of symmetry. If there existed a solution for some
m ∈ (−1,0) having λ′ > 0 and vortices 3 and 4 on the axis of symmetry, we could
rescale the vortex strengths by 1/m and relabel the vortices to obtain a solution
with m < −1, λ′ > 0, and vortices 1 and 2 on the axis of symmetry. But this
contradicts the last statement of the theorem.

2. For completeness, we note that the cases having real, positive solutions with λ′ < 0
agree with the results in Sect. 7.2. For example, when −1/2 < m < 0, we find con-
cave kite configurations with vortices 1 and 2 on the axis of symmetry, as predicted
by Theorem 7.2. For m < −2, we find convex kite solutions with vortices 1 and 2
on the axis of symmetry. Rescaling the vortex strengths by 1/m and relabeling
the vortices gives a family of convex kites with vortices 3 and 4 on the axis of
symmetry and −1/2 < m < 0. This also concurs with Theorem 7.2.
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7.4 The Rhombus Solutions

In this final section we study convex kite configurations that have two lines of sym-
metry, namely rhombus configurations. Here we have four congruent exterior sides,
r13 = r14 = r23 = r24 with the diagonals satisfying the relation r2

12 + r2
34 = 4r2

13. The
areas satisfy A1 = A2 = −A3 = −A4. The first and last equations in (9) are clearly
satisfied. The middle four equations in (9) are equivalent. They, along with the value
of λ′ determined by (8), yield a formula for m given by

m = x2(3 − x2)

3x2 − 1
, (39)

where x = r34/r12 is the ratio between the diagonals of the rhombus. Note that m > 0
if and only if 1/

√
3 < x <

√
3. As usual, we restrict to the case −1 < m ≤ 1.

Unlike the isosceles trapezoid case, here we have solutions for m < 0. In fact,
there are two geometrically distinct families of rhombi when m < 0. This can be seen
by inverting Eq. (39), which yields

x2 = 1

2

(
3 − 3m ±

√
(3 − 3m)2 + 4m

)
. (40)

Choosing + in Eq. (40) yields a solution that exists for −1 < m ≤ 1. We will call this
solution rhombus A. Taking − in Eq. (40) yields a solution valid for −1 < m < 0.
We will call this solution rhombus B.

Using Eq. (4), we compute that

λ = 4(m2 + 4m + 1)

r2
12(2 + 3m − 3m2 ± m

√
9m2 − 14m + 9)

, (41)

where + is used for rhombus A and − is taken for rhombus B. Note that the numerator
of (41) vanishes at m = −2 + √

3 ≈ −0.2679. The denominator also vanishes at this
special value, but only when + is chosen. For the rhombus A solution, the value of
the angular velocity λ is always positive (thus λ′ < 0) and monotonically increasing
in m. In contrast, for the rhombus B solution, we have λ > 0 (thus λ′ < 0) only
for −2 + √

3 < m < 0. At the special value m = −2 + √
3, the rhombus B relative

equilibrium becomes an equilibrium since λ = 0 (see Sect. 4.1). As m decreases
through −2 + √

3, the direction of rotation flips, λ becomes negative and λ′ becomes
positive. We summarize our conclusions in the following theorem.

Theorem 7.7 There exist two one-parameter families of rhombi relative equilibria
with vortex strengths Γ1 = Γ2 = 1 and Γ3 = Γ4 = m. The vortices 1 and 2 lie on
opposite sides of each other, as do vortices 3 and 4. Let β = 3 − 3m. The mutual
distances are given by

(
r34

r12

)2

= 1

2

(
β ±

√

β2 + 4m
)

and

(
r13

r12

)2

= 1

8

(
β + 2 ±

√

β2 + 4m
)
, (42)

describing two distinct solutions. Taking + in (42) yields a solution called rhombus A
that exists for m ∈ (−1,1] and always has λ > 0. Taking − in (42) yields a solution
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Fig. 7 A plot of x versus m for
the two rhombus families of
relative equilibria, where
x = r34/r12 is the ratio between
the diagonals of the rhombus.
The top curve corresponds to
rhombus A while the bottom
curve refers to rhombus B. The
× on the bottom curve indicates
the location of the equilibrium
point for rhombus B at
(m = −2 + √

3, x = 2 − √
3).

The relative equilibria to the
right of this point rotate in the
opposite direction as those to the
left

called rhombus B that exists for m ∈ (−1,0) and has λ > 0 for m ∈ (−2+√
3,0), but

λ < 0 for m ∈ (−1,−2+√
3). At m = −2+√

3, rhombus B becomes an equilibrium.
The case m = 1 reduces to the square. For the rhombus A family, the larger pair of
vortices, (vortices 1 and 2), lie on the shorter diagonal, while for the rhombus B
family, the larger pair lie on the longer diagonal.

Proof The formula for r13/r12 comes from 1 + x2 = 4(r13/r12)
2. It is easy to show

from Eq. (40) that for rhombus A we have x > 1 for −1 < m < 1. Likewise, for
rhombus B, we have x < 1 for −1 < m < 0. This verifies the last statement of the
theorem. �

One way to visualize the two rhombus solutions is captured in Fig. 7, where a plot
of x = r34/r12 versus m is shown. Beginning with the square at m = 1, as m decreases
toward m = 0 the ratio of the diagonals for rhombus A increases from 1 to

√
3, while

the ratio between the shorter diagonal and the common side length decreases from
√

2
to 1. At m = 0 a bifurcation occurs, and the rhombus B family is born emerging out of
a binary collision between vortices 3 and 4, while the rhombus A family persists. The
two families are distinguished by the fact that the larger pair of vortices, (vortices
1 and 2), lie on the shorter diagonal in rhombus A and on the longer diagonal in
rhombus B (see Fig. 8). As m → −1+, x → √

2−1 for rhombus B while x → √
2+1

for rhombus A.

Remark

1. The rhombus B family undergoes a pitchfork bifurcation at the special parameter
value m∗ ≈ −0.5951. As m increases through m∗, the rhombus bifurcates into
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Fig. 8 The two distinct rhombi relative equilibria when m = −0.3. Rhombus A is to the left, rhombus B
to the right. The solutions rotate in opposite directions

two convex kite solutions with the positive strength vortices on the axis of sym-
metry. The two kites are distinguished by whether r13 > r23 or r13 < r23. Since
the rhombus solution continues to exist past the bifurcation, we have a pitchfork
bifurcation. The null space of the Hessian matrix D2(H + λI) for rhombus B,
evaluated at m = m∗, is one-dimensional (excluding the “trivial” vector in the di-
rection of rotation) and contains a vector corresponding to a perturbation in the
direction of the convex kite solution found in Sect. 7.3.

2. The linear stability of the relative equilibria corresponding to the two rhombus
families can be determined analytically (see Roberts 2013). It turns out that rhom-
bus A is linearly stable for −2 + √

3 < m ≤ 1. It is degenerate at m = −2 + √
3

and unstable for −1 < m < −2 + √
3. The rhombus B family is always unsta-

ble, containing at least one pair of real eigenvalues. However, as m increases
through m∗, one pair of eigenvalues changes from pure imaginary (stable) to
real, which is precisely the type of behavior expected at a pitchfork bifurca-
tion.

3. Using Eqs. (41) and (42), it is straightforward to check that parts 1 and 3 of Propo-
sition 2.4 are satisfied for both rhombus families.
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