(1) Read sections 1.1 and 1.2 in the text (Edwards and Penney).

(2) Verify that the given function \(y(x) \) is a solution to the differential equation by substitution for each of the problems below.

 (a) \(y' = 4x^3, \ y = x^4 + 27 \). \hspace{1cm} (b) \(y' = -3y, \ y = 2e^{-3x} \).

(3) Find all solutions of the form \(y = e^{rx} \) to the differential equations below by substitution (here \(r \) is a real constant).

 (a) \(3y'' - 4y' - 4y = 0 \). \hspace{1cm} (b) \(4y'' = y \).

(4) Determine a value of the constant \(C \) so that the given solution of the differential equation satisfies the initial condition.

 (a) \(y = \ln(x + C) \) solves \(e^y y' = 1 \), \(y(0) = 1 \). \hspace{1cm} (b) \(y = Ce^{-x} + x - 1 \) solves \(y' = x - y \), \(y(0) = 3 \).

(5) Write a differential equation for a population \(P \) that is changing in time \((t) \) such that the rate of change is proportional to the square root of \(P \).

(6) Solve the following initial value problems.

 (a) \(\frac{dy}{dx} = 3x + 1 \), \(y(0) = 1 \). \hspace{1cm} (b) \(\frac{dy}{dx} = \sqrt{x} \), \(y(9) = 0 \).

 (c) \(\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}} \), \(y(0) = 0 \). \hspace{1cm} (d) \(\frac{dy}{dx} = xe^{-x} \), \(y(0) = 2 \).