Math 3280 Assignment 11, due Thursday, December 4th.
This assignment covers material from section 7.4, chapter 10, and chapter 11.
(1) Compute the Laplace transform of the function

$$
v(t)=\left\{\begin{array}{l}
1 \text { for } t \in[0,1] \\
0 \text { for } t \in[-\infty, 0) \text { and } t \in(1, \infty]
\end{array}\right.
$$

directly from the definition $\mathcal{L}(v)=\int_{0}^{\infty} e^{-s t} v(t) d t$.
(2) Use the Laplace transform method to solve the initial value problem $x^{\prime \prime}-x^{\prime}-2 x=0, x(0)=0$, $x^{\prime}(0)=1$.
(3) Compute the Laplace transform of the sawtooth function $f(t)=t-\lfloor t\rfloor$ where $\lfloor t\rfloor$ is the floor function. The floor of t is the largest integer less than or equal to t. For example, $\lfloor 2.6\rfloor=2$.

For the next two problems, consider two blocks of mass m_{1} and m_{2} connected by springs to each other and to walls as shown below. The displacement of the masses from their equilibrium positions are denoted by x_{1} and x_{2}. The stiffness of the three springs are k_{1}, k_{2}, and k_{3} as shown. Compute the natural frequencies and describe the natural modes of oscillation in each of the three following cases:
(4) $k_{1}=k_{2}=4$ and $k_{3}=2$, and $m_{1}=2, m_{2}=1$.
(5) $k_{1}=k_{3}=0$ and $k_{2}=4$, and $m_{1}=m_{2}=1$.

(6) Find the power series solution to the ODE $y^{\prime}=3 x^{2} y$ (expanded at $x=0$). You should be able to determine each coefficient as an explicit function of its index (rather than just a recurrence relation).
(7) Show that the coefficients of the power series solution to the initial value problem $y^{\prime \prime}-y^{\prime}-y=$ $0, y(0)=0, y^{\prime}(0)=1$ have the form $c_{n}=F_{n} / n$! where F_{n} is the nth Fibonacci number. (The Fibonacci numbers are $1,1,2,3,5,8,13,21,34, \ldots$, satisfying the recursion relation that each number is the sum of the previous two in the sequence.)
(8) Determine the power series solution and radius of convergence of the ODE $y^{\prime \prime}+x^{2} y=0$.

