(1) Compute the equilibria of the following nonlinear differential equations, and use that information to match each equation with a trajectory plot from the following page. It may be helpful to compute the eigenvalues at an equilibrium.
(a) $x^{\prime}=x-y, y^{\prime}=x+3 y-4$.
(b) $x^{\prime}=2 x-y, y^{\prime}=x-3 y$.
(c) $x^{\prime}=2 \sin (x)+\sin (y), y^{\prime}=\sin (x)+2 \sin (y)$.
(d) $x^{\prime}=x-2 y, y^{\prime}=-x^{3}+4 x$.
(e) $x^{\prime}=1-y^{2}, y^{\prime}=x+2 y$.
(f) $x^{\prime}=x-2 y+3, y^{\prime}=x-y+2$.
(2) Find the unique equilibrium of the system $x^{\prime}=x-y, y^{\prime}=5 x-3 y-2$. Compute the eigenvalues of its linearization to determine the stability of the equilibrium (see Theorem 2 in section 9.2).
(3) In 1958, Tsuneji Rikitake formulated a simple model of the Earth's magnetic core to explain the oscillations in the polarity of the magnetic field. The equations for his model are:

$$
\begin{gathered}
x^{\prime}=-\mu x+y z \\
y^{\prime}=-\mu y+(z-a) x \\
z^{\prime}=1-x y
\end{gathered}
$$

where a and μ are positive constants. Find the equilibria for this system for $a=\mu=1$, and write down the Jacobian matrix of the linearized system at these equilibria.

