(1) Find a quadratic polynomial $a_{2} x^{2}+a_{1} x+a_{0}$ whose graph passes through the points $(1,3),(2,3)$, and $(4,9)$.
(2) Determine whether the vectors $(0,2)$ and $(0,5)$ are linearly dependent or independent.
(3) Express $w=(1,2)$ as a linear combination of $u=(-1,-1)$ and $v=(2,1)$.
(4) Calculate the determinant of the matrix whose columns are u, v, and w to determine if u, v, and w are linearly independent or not, with $u=(-2,-5,-4), v=(5,4,-6)$, and $w=(8,3,-4)$.
(5) Is the subset $W=\{(x, y, z) \mid y \geq 0\} \subset \mathbb{R}^{3}$ a vector subspace of \mathbb{R}^{3} ? Explain why or why not.
(6) Is the subset $W=\{(x, y, z) \mid y=0\} \subset \mathbb{R}^{3}$ a vector subspace of \mathbb{R}^{3} ? Explain why or why not.
(7) Is the subset $W=\{(x, y, z) \mid z=1\} \subset \mathbb{R}^{3}$ a vector subspace of \mathbb{R}^{3} ? Explain why or why not.
(8) If W is the subset of all vectors (x, y) in \mathbb{R}^{2} such that $|x|=|y|$, is W a vector subspace or not?
(9) Suppose that x_{0} is a solution to the equation $A x=b$ (where A is a matrix and x and b are vectors). Show that x is a solution to $A x=b$ if and only if $y=x-x_{0}$ is a solution to the system $A y=0$.
(10) Determine whether the vectors $v_{1}=(3,0,1,2), v_{2}=(1,-1,0,1)$, and $v_{3}=(4,2,2,2)$ are linearly independent or dependent. If they are linearly dependent, find a nontrivial combination of them that adds up to the zero vector.
(11) Find a basis for the subspace of \mathbb{R}^{3} given by $x-2 y+7 z=0$.
(12) Find a basis for the subspace of \mathbb{R}^{3} given by $x=z$.
(13) Find a basis for the subspace of all vectors $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ in \mathbb{R}^{4} such that $x_{1}+x_{2}=$ $x_{3}+x_{4}$.

The following two questions are about subsets of the set of real-valued functions of the real line. We will call this set \mathcal{F}.
(14) Is the subset of \mathcal{F} with the property that $f(0)=0$ a vector space?
(15) Is the subset of \mathcal{F} with the property that $f(-x)=-f(x)$ for all x a vector space?
(16) Compute the Wronskian of $f_{1}=e^{-x}, f_{2}=\cos (x)$ and $f_{3}=\sin (x)$ to determine whether these three functions are linearly independent on the real line.

