(1) Rewrite the second-order differential equation $x^{\prime \prime}+3 x^{\prime}+5 x=t$ as a system of first-order differential equations. (You do not have to find the solution.)

Find the eigenvalues and eigenvectors of the following matrices:
(2) $\left(\begin{array}{rr}4 & -2 \\ 1 & 1\end{array}\right)$
(3) $\left(\begin{array}{ll}5 & -6 \\ 3 & -4\end{array}\right)$
(4) $\left(\begin{array}{rrr}2 & 0 & 0 \\ 5 & 3 & -2 \\ 2 & 0 & 1\end{array}\right)$
(5) $\left(\begin{array}{lll}3 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
(6) $\left(\begin{array}{rr}0 & -2 \\ 1 & 0\end{array}\right)$
(7) $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$

Find a matrix P such that $P^{-1} A P=D$, where D is a diagonal matrix, for the following matrices if such a P exists.
(8) $\left(\begin{array}{rrr}0 & 1 & 0 \\ -1 & 2 & 0 \\ -1 & 1 & 1\end{array}\right)$
(9) $\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2\end{array}\right)$
(10) Show that if A is invertible and λ is an eigenvalue of A, then $1 / \lambda$ is an eigenvalue of A^{-1}. Are the eigenvectors the same?
(11) By computing the eigenvalues and eigenvectors of $A=\left(\begin{array}{rr}3 & -2 \\ 1 & 0\end{array}\right)$ find a matrix P such that $P^{-1} A P=D$ where D is a diagonal matrix. Use this diagonalization to compute A^{6}.

