(1) Read sections 1.1 and 1.2 in the text (Edwards and Penney).
(2) Verify that the given function $y(x)$ is a solution to the differential equation by substitution for each of the problems below.
(a) $y^{\prime}=4 x^{3}, y=x^{4}+27$.
(b) $y^{\prime}=-3 y, y=2 e^{-3 x}$.
(3) Find all solutions of the form $y=e^{r x}$ to the differential equations below by substitution (here r is a real constant).
(a) $3 y^{\prime \prime}-4 y^{\prime}-4 y=0$.
(b) $4 y^{\prime \prime}=y$.
(4) Determine a value of the constant C so that the given solution of the differential equation satisfies the initial condition.
(a) $y=\ln (x+C)$ solves $e^{y} y^{\prime}=1, \quad y(0)=1$.
(b) $y=C e^{-x}+x-1$ solves $y^{\prime}=x-y, \quad y(0)=3$.
(5) Write a differential equation for a population P that is changing in time (t) such that the rate of change is proportional to the square root of P.
(6) Solve the following initial value problems.
(a) $\frac{d y}{d x}=3 x+1, \quad y(0)=1$.
(b) $\frac{d y}{d x}=\sqrt{x}, \quad y(9)=0$.
(c) $\frac{d y}{d x}=\frac{1}{\sqrt{1-x^{2}}}, \quad y(0)=0$.
(d) $\frac{d y}{d x}=x e^{-x}, \quad y(0)=2$.

