Math 3280 Assignment 11, due Friday, December 2nd.
This assignment covers material from chapter 9 , and chapter 10.
(1) Compute the Laplace transform of the function

$$
v(t)=\left\{\begin{array}{l}
1 \text { for } t \in[0,1] \\
0 \text { for } t \in[-\infty, 0) \text { and } t \in(1, \infty]
\end{array}\right.
$$

directly from the definition $\mathcal{L}(v)=\int_{0}^{\infty} e^{-s t} v(t) d t$.
(2) Use the Laplace transform method to solve the initial value problem $x^{\prime \prime}-x^{\prime}-2 x=0, x(0)=0$, $x^{\prime}(0)=1$.
(3) Compute the Laplace transform of the sawtooth function $f(t)=t-\lfloor t\rfloor$ where $\lfloor t\rfloor$ is the floor function. The floor of t is the largest integer less than or equal to t. For example, $\lfloor 2.6\rfloor=2$.
(4) Compute the equilibria of the following nonlinear differential equations, and use that information to match each equation with a trajectory plot from the following page. It may be helpful to compute the eigenvalues at an equilibrium.
(a) $x^{\prime}=x-y, y^{\prime}=x+3 y-4$.
(b) $x^{\prime}=2 x-y, y^{\prime}=x-3 y$.
(c) $x^{\prime}=2 \sin (x)+\sin (y), y^{\prime}=\sin (x)+2 \sin (y)$.
(d) $x^{\prime}=x-2 y, y^{\prime}=-x^{3}+4 x$.
(e) $x^{\prime}=1-y^{2}, y^{\prime}=x+2 y$.
(f) $x^{\prime}=x-2 y+3, y^{\prime}=x-y+2$.
(5) Find the unique equilibrium of the system $x^{\prime}=x-y, y^{\prime}=5 x-3 y-2$. Compute the eigenvalues of its linearization to determine the stability of the equilibrium (see Theorem 2 in section 9.2).
(6) In 1958, Tsuneji Rikitake formulated a simple model of the Earth's magnetic core to explain the oscillations in the polarity of the magnetic field. The equations for his model are:

$$
\begin{gathered}
x^{\prime}=-\mu x+y z \\
y^{\prime}=-\mu y+(z-a) x \\
z^{\prime}=1-x y
\end{gathered}
$$

where a and μ are positive constants. Find the equilibria for this system for $a=\mu=1$, and compute the eigenvalues of the linearized system at those equilibria.

