Math 3280 Assignment 2, due Friday September 9th.
In addition to the problems below, you should read sections 1.3, 1.4, and 1.5 in our text.
Find the general solutions $y(x)$ to the following separable equations:
(1) $y^{\prime}=4 x y$.
(2) $(2+2 x) y^{\prime}=4 y$.
(3) $y^{\prime}=y \cos (x)$.
(4) $y^{\prime}=1+x+y+x y$.

Find the solution $y(x)$ to the following initial value problems:
(5) $y^{\prime}=2 y e^{x}, \quad y(0)=2 e^{2}$.
(6) $y^{\prime}=x^{3}\left(y^{2}+1\right), y(0)=1$.
(7) In carbon-dating organic material it is assumed that the amount of carbon-14 $\left({ }^{14} C\right)$ decays exponentially $\left(\frac{d^{14} C}{d t}=-k{ }^{14} C\right)$ with rate constant of $k \approx 0.0001216$ where t is measured in years. Suppose an archeological bone sample contains $1 / 7$ as much carbon-14 as is in a present-day sample. How old is the bone?
(8) Suppose you are designing a dosage regimen for the antibiotic ciprofloxacin (cipro). Assume the half-life of cipro is 4 hours. Let $x(t)$ be the amount of cipro present at time t hours after the initial dose, in units of milligrams per kilogram of the patient, and that x satisfies the differential equation $x^{\prime}=-k x$ where k is a constant. If you decide to use equal doses which increase the value of x by 10 every 4 hours, how large can x become over time?

Determine what the existence and uniqueness theorem (Theorem 1 from Chapter 1.3) guarantees about solutions to the following initial value problems (note that you do not have to find the solutions):
(9) $d y / d x=\sqrt{x y}, y(0)=1$.
(10) $d y / d x=y^{1 / 3}, y(0)=2$.
(11) $d y / d x=y^{1 / 3}, y(2)=0$.
(12) $d y / d x=x \ln (y), y(0)=1$.

Solve the following first-order linear ODEs:
(13) $d y / d x=-2 y+2 x e^{-2 x}$.
(14) $d y / d x+y \tan (x)=\sin (x)$.

