Math 3280 Assignment 7, due Friday October 21st.
For this assignment you should read sections 5.1, 5.2, and 5.3 in the text.
(1) Compute the Wronskian of $f_{1}=e^{-x}, f_{2}=\cos (x)$ and $f_{3}=\sin (x)$ to determine whether these three functions are linearly independent on the real line.
(2) Solve the initial value problem $y^{\prime \prime}-4 y=0, y(0)=4, y^{\prime}(0)=2$ given that $y_{1}=e^{2 x}$ and $y_{2}=e^{-2 x}$ are both solutions to the ODE.
(3) Find the general solution to $y^{\prime \prime}+6 y^{\prime}=0$.
(4) Find the general solution to $4 y^{\prime \prime}+4 y^{\prime}+y=0$.
(5) For what second-order constant coefficient linear homogeneous ODE would $y=$ $C_{1}+C_{2} x$ be the general solution?
(6) Show that the functions $3 x, 2 x^{2}$, and $5 x-8 x^{2}$ are linearly dependent by finding a linear combination of them that equals zero.
(7) Find the general solution to $y^{\prime \prime}+10 y^{\prime}+25 y=0$.
(8) Find the general solution to $y^{(4)}-6 y^{(3)}+9 y^{\prime \prime}=0$.
(9) Solve the initial value problem $y^{\prime \prime}-6 y^{\prime}+25 y=0, y(0)=6, y^{\prime}(0)=2$.
(10) Find the general solution of $6 y^{(4)}+5 y^{(3)}+18 y^{\prime \prime}+20 y^{\prime}-24 y=0$ given that $y=\cos (2 x)$ is a solution.
(11) Consider the differential equation $y^{\prime \prime}+\operatorname{sgn}(x) y=0$, where $\operatorname{sgn}(x)$ is the sign function:

$$
\operatorname{sgn}(x)=\left\{\begin{array}{rll}
1 & \text { if } & x>0 \\
-1 & \text { if } & x<0 \\
0 & \text { if } & x=0
\end{array}\right.
$$

Compute the two linearly independent solutions y_{1} and y_{2} of this differential equation which satisfy the initial conditions $y_{1}(0)=1, y_{1}^{\prime}(0)=0$ and $y_{2}(0)=0$, $y_{2}^{\prime}(0)=1$. (First solve the differential equation for $x<0$ and $x>0$, and then use the initial conditions to glue them together.)

