Math 3280 Assignment 8, due Friday, November 4th.

The problems on this assignment are mainly related to the material in sections $5.4-5.6$ of the text.
(1) Find a particular solution to the ODE $y^{\prime \prime}-y^{\prime}+2 y=4 x+12$.
(2) Find a particular solution to the ODE $y^{\prime \prime}-y^{\prime}+y=\sin ^{2}(x)$. (Hint: it may be helpful to use a trig identity.)
(3) Find the general solution to $y^{(3)}-y^{\prime}=e^{x}$.

For the following two problems (4 and 5), determine the form of the particular solution - note that you do not have to determine the values of the coefficients. You should not include terms from the homogeneous (complementary) solution.
(4) Determine the form of the particular solution to $y^{\prime \prime \prime}=9 x^{2}+1$.
(5) Determine the form of the particular solution to $y^{(4)}-16 y^{\prime \prime}=x^{2} \sin (4 x)+\sin (4 x)$.
(6) Solve the initial value problem $y^{\prime \prime}+2 y^{\prime}+2 y=\cos (3 x), y(0)=0, y^{\prime}(0)=2$.
(7) Solve the initial value problem $y^{(4)}-y=1, y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=y^{(3)}=0$.
(8) Use the variation of parameters method to find the general solution of

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{x} / x
$$

(9) Use the variation of parameters method to find the general solution of

$$
y^{\prime \prime}+9 y=12 \sec (3 x)
$$

(10) How many times can an overdamped mass-spring system $\left(m x^{\prime \prime}+c x^{\prime}+k x=0\right.$ with $c^{2}>4 m k ; c, m$, and k are non-negative) with arbitrary initial conditions $x(0)=x_{0}$, $x^{\prime}(0)=v_{0}$ pass through $x=0$? What if it is critically damped $\left(c^{2}=4 m k\right)$?
(11) Find the steady-state solution of the forced, damped oscillator $x^{\prime \prime}+x^{\prime} / 4+2 x=$ $2 \cos (w t)$ if $x(0)=0$ and $x^{\prime}(0)=4$. Sketch the overall amplitude of the steady-state solution as a function of w.
(12) Rewrite the second-order differential equation $x^{\prime \prime}+3 x^{\prime}+5 x=t$ as a system of first-order differential equations. (You do not have to find the solution.)

