Math 3280 Practice Final

This is longer than the actual exam, which will be 8 to 10 questions (some might be multiple choice). You are allowed up to two sheets of notes (both sides) and a calculator, although any use of a calculator must be indicated. On numerical method probems (e.g. Euler's method) the use of a (non-internet capable) calculator is expected.
(1) Find the general solution to $(1+t) y^{\prime}+y=\cos t$.
(2) Rewrite the initial value problem $y^{\prime \prime \prime}+y^{\prime \prime}+y=t, y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0$ as an equivalent first-order system.
(3) Find the general solution to the system

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
2 & 4 \\
-1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

(4) Are the vectors $v_{1}=(1,2,3,4), v_{2}=(2,-2,4,2)$, and $v_{3}=(0,-3,-1,-3)$ linearly independent? If not, write one of them as a linear combination of the other two.
(5) Solve the initial value problem $y^{\prime \prime}+y=\cos x, y^{\prime}(0)=0, y(0)=-\frac{1}{2}$.
(6) Use Euler's, the Improved Euler's, or the Runge-Kutta method to numerically approximate $y(2)$ to two digits of accuracy if $y^{\prime}=t+\sqrt{y}$ and $y(0)=1$.
(7) Find the general solution to the system

$$
\frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -5 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

(8) Find the Laplace transform $X(s)=\mathcal{L}(x(t))$ if $x^{\prime \prime}+8 x^{\prime}+15 x=0$ and $x(0)=0$, $x^{\prime}(0)=1$. Then find the solution $x(t)$.
(9) What is the form of the general solution to the ODE $y^{\prime \prime \prime}-4 y^{\prime \prime}+14 y^{\prime}-20 y=$ $t e^{t} \cos (3 t)+t^{2}$. Hint: one of the roots of the characteristic polynomial of the lefthand side is 2 . For extra credit find the values of the constants in the particular solution.
(10) Consider a mass-spring system with two masses of mass m_{1} and m_{2}. Mass 1 is connected to a wall with a spring of stiffness k_{1} and to mass 2 with a spring of stiffness k_{2}. Mass 2 is a connected to a second wall with a spring of stiffness k_{3}, as shown below. Their displacements from the equilibrium are x_{1} and x_{2}, which we will combine into a vector $x=\binom{x_{1}}{x_{2}}$. Then if $x^{\prime \prime}=A x$, show that the real parts of the eigenvalues of A must be negative if the masses and spring constants are positive.

(11) Use either the Laplace transform method or the eigenvalue/eigenvector method to find the steady state solution to the initial value problem $x^{\prime}=-x-z$, $y^{\prime}=-x-y, z^{\prime}=2 x+z, x(0)=0, y(0)=0, z(0)=2$.
(12) Find the equilibria of the system $x^{\prime}=2 y^{3}-2 x, y^{\prime}=x^{2}-1$, and determine their stability by computing the eigenvalues of the linearized systems.
(13) Three identical, well-stirred tanks of with 100 liters of water in each tank are connected in series with tank 1 pumping 10 liter/minute into tank 2 , tank 2 pumping 10 liter/minute into tank 3, and tank 3 pumping 10 liter/minute into tank 1. If tank 1 initially has 500 grams of salt dissolved in it, and the other two tanks start at time $t=0$ with no salt, which of the following initial value problems describes the amounts of salt in grams in each tank ($x_{1}=$ salt in tank $1, x_{2}=$ salt in tank $2, x_{3}=$ salt in tank 3$)$.

$$
\begin{array}{ll}
\text { (a) } x_{1}^{\prime}=\frac{1}{10} x_{3}-\frac{1}{10} x_{1} & x_{2}^{\prime}=\frac{1}{10} x_{1}-\frac{1}{10} x_{2} \\
x_{1}(0)=0, x_{2}(0)=0, x_{3}(0)=0 . & x_{3}^{\prime}=\frac{1}{10} x_{2}-\frac{1}{10} x_{3} \\
\text { (b) } x_{1}^{\prime}=\frac{1}{100} x_{2}-\frac{1}{10} x_{1} & x_{2}^{\prime}=\frac{1}{100} x_{3}-\frac{1}{10} x_{2}
\end{array} x_{3}^{\prime}=\frac{1}{100} x_{1}-\frac{1}{10} x_{3} .
$$

$$
\begin{aligned}
& \text { (c) } x_{1}^{\prime}=\frac{1}{10} x_{3}-\frac{1}{10} x_{1} \quad x_{2}^{\prime}=\frac{1}{10} x_{1}-\frac{1}{10} x_{2} \quad x_{3}^{\prime}=\frac{1}{10} x_{2}-\frac{1}{10} x_{3} \\
& x_{1}(0)=500, x_{2}(0)=0, x_{3}(0)=0 \text {. } \\
& \text { (d) } x_{1}^{\prime}=\frac{1}{10} x_{3}+\frac{1}{10} x_{1} \quad x_{2}^{\prime}=\frac{1}{10} x_{1}+\frac{1}{10} x_{2} \quad x_{3}^{\prime}=\frac{1}{10} x_{2}+\frac{1}{10} x_{3} \\
& x_{1}(0)=500, x_{2}(0)=0, x_{3}(0)=0 .
\end{aligned}
$$

(14) What is the dimension of the field of complex numbers when it is considered as a vector space over the field of real numbers? Justify your answer by finding a basis.

