
Math 3280 Practice Final Solutions

This is longer than the actual exam, which will be 8 to 10 questions (some might be
multiple choice). You are allowed up to two sheets of notes (both sides) and a calculator,
although any use of a calculator must be indicated. On numerical method probems (e.g.
Euler’s method) the use of a (non-internet capable) calculator is expected.

(1) Find the general solution to (1 + t)y′ + y = cos t.

Solution: In standard form (i.e. y′ + P (t)y = Q(t)) we have y′ +
1

1 + t
y =

cos(t)

1 + t
.

Using the integrating factor method (section 1.5), we have

ρ(t) = e
∫
P (t)dt = elog(1+t) = 1 + t.

Then
∫
ρ Q dt =

∫
cos t dt = sin t and

y =
C

ρ
+

1

ρ

∫
ρQdt =

C

1 + t
+

sin t

1 + t
.

(2) Rewrite the initial value problem y′′′ + y′′ + y = t, y(0) = y′(0) = y′′(0) = 0 as an
equivalent first-order system.

Solution: Introduce the variables v1 = y′, v2 = v′1 = y′′ and the system becomes:

y′ = v1

v′1 = v2

v′2 = t− v2 − y
y(0) = 0, v1(0) = 0, v2(0) = 0

Note that rewriting the initial conditions is a required part of this answer.

(3) Find the general solution to the system

d

dt

[
x1
x2

]
=

[
2 4
−1 −3

] [
x1
x2

]
.

Solution: The eigenvalues of the matrix are found from

det

[
2− λ 4
−1 −3− λ

]
= λ2 + λ− 2 = (λ− 1)(λ+ 2) = 0

From row-reducing A − λI for each of these two eigenvalues (λ = 1 and λ = −2)
we can find that the eigenvectors are ~v1 = (−4, 1) and ~v2 = (−1, 1), so the solutions
are x1 = −4C1e

t − C2e
−2t and x2 = C1e

t + C2e
−2t. It is also acceptable to keep the

solution in vector form:
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x = C1e
t

[
−4
1

]
+ C2e

−2t
[
−1
1

]
For large t, (x1, x2) ≈ et(−4C1, C1). For large −t, (x1, x2) ≈ e−2t(−C2, C2). Some

trajectories are shown below.

-3 -2 -1 1 2 3

-3

-2

-1
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(4) Are the vectors v1 = (1, 2, 3, 4), v2 = (2,−2, 4, 2), and v3 = (0,−3,−1,−3) linearly
independent? If not, write one of them as a linear combination of the other two.

Solution: The vectors are linearly dependent if there are c1, c2, c3, not all zero,
such that c1v1 + c2v2 + c3v3 = 0. This is equivalent to the coefficient matrix A =

1 2 0
2 −2 −3
3 4 −1
4 2 −3

 having less than 3 pivots after row-reduction. If we row-reduce A

we find
1 2 0
2 −2 −3
3 4 −1
4 2 −3

→


1 2 0
0 −6 −3
0 −2 −1
0 −6 −3

→


1 2 0
0 1 1

2
0 0 0
0 0 0

→


1 0 −1
0 1 1

2
0 0 0
0 0 0

 .
This only has two pivots. The free variable is c3, which we can choose to be 2 (to
avoid fractions - it would be OK to set it to any nonzero value), which gives c2 = −1
and c1 = 2.

So 2v1 − v2 + 2v3 = 0; we can write any of the vectors in terms of the other two
but the easiest choice here is v2 = 2v1 + 2v3.



(5) Solve the initial value problem y′′ + y = cosx, y′(0) = 0, y(0) = −1
2
.

Solution: This could be also done with a Laplace transform. Using undetermined
coefficients we find the solution by decomposing it into y = yh+yp. The homogeneous
solution yh is found from the characteristic equation r2 + 1 = (r− i)(r+ i) = 0 to be
yh = C1 cos(x) + C2 sin(x).

Since the right-hand side cos(x) is contained in the solution space of the homo-
geneous equation, we consider particular solutions of the form yp = Ax cos(x) +
Bx sin(x). Then y′′p = −Ax cos(x)− 2A sin(x) + 2B cos(x)−Bx sin(x). Substituting
these forms into our ODE yields −2A sin(x) + 2B cos(x) = cos(x), so A = 0 and
B = 1/2.

So now we know that y = C1 cos(x) +C2 sin(x) +x sin(x)/2. Evaluating this using

the initial conditions we get C2 = 0 and C1 = −1
2
, so y =

− cos(x) + x sin(x)

2
.

(6) Use Euler’s, the Improved Euler’s, or the Runge-Kutta method to numerically ap-
proximate y(2) to two digits of accuracy if y′ = t+

√
y and y(0) = 1.

Solution: It takes 76 steps to get the desired accuracy with Euler’s Method (so this
is somewhat harder than anything I would require on the actual final exam). For the
improved Euler’s method, 5 steps are needed. Fourth-order Runge-Kutta works in 1
step (stepsize 2), giving y(2) ≈ 6.37 which agrees with y(2) = 6.411474127809772838513 . . .
in the first two digits after rounding:

f(x, y) = x+
√
y, h = 2, x0 = 0, y0 = 1

k1 = f(x0, y0) = f(0, 1) = 1

k2 = f(x0 + h/2, y0 + hk1/2) = f(1, 2) = 1 +
√

2 ≈ 2.41421356

k3 = f(x0 + h/2, y0 + hk2/2) = f(1,
√

2 + 2) =

√√
2 + 2 + 1 ≈ 2.84775907

k4 = f(x0 + h, y0 + hk3) = f(2, 2

√√
2 + 2 + 3) =

√
2

√√
2 + 2 + 3 + 2 ≈ 4.58756993

y(2) ≈ y1 = y0+
h

6
(k1+2k2+2k3+k4) =

√√
2 + 2+

1

3

√
2

√√
2 + 2 + 3+

2

3

√
2+

10

3
≈ 6.37050506

It is not necessary to keep the intermediate calculations in exact form, as done
above, but you do need to be careful to include enough digits to avoid
rounding error - especially if you are trying for a more accurate solution.

(7) Find the general solution to the system

d

dt

[
x1
x2

]
=

[
1 −5
1 3

] [
x1
x2

]
.
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Solution: The characteristic equation is det(A − λI) = λ2 − 4λ + 8 with roots
(eigenvalues) λ = 2± 2i. We need to find one eigenvector, lets find it for λ = 2 + 2i.
We now row reduce

A− (2 + 2i)I =

[
−1− 2i −5
1 1− 2i

]
→
[

1 1− 2i
0 0

]
So the eigenvector can be chosen to be v = (−1 + 2i, 1). Then the solution to the

system is

x =

[
x1
x2

]
= C1Re[ve

2t(cos (2t) + i sin (2t))] + C2Im[ve2t(cos (2t) + i sin (2t))]

= C1

[
−e2t(cos (2t) + 2 sin (2t))
e2t cos (2t)

]
+ C2

[
e2t(− sin (2t) + 2 cos (2t))
e2t sin (2t)

]

(8) Find the Laplace transform X(s) = L(x(t)) if x′′ + 8x′ + 15x = 0 and x(0) = 0,
x′(0) = 1. Then find the solution x(t).

Solution: Taking the Laplace transform of the ODE gives

s2X(s) + 8sX(s) + 15X(s)− 8x(0)− sx(0)− x′(0)

= s2X(s) + 8sX(s) + 15X(s)− 1 = 0.

Solving for X(s) and performing a partial fraction decomposition, we get

X(s) =
1

s2 + 8s+ 15
=

1/2

s+ 3
− 1/2

s+ 5

Since L−1( 1
s−a) = eat, we can invert X(s) to get x(t) = e−3t

2
− e−5t

2
.

(9) What is the form of the general solution to the ODE y′′′ − 4y′′ + 14y′ − 20y =
tet cos (3t) + t2. Hint: one of the roots of the characteristic polynomial of the left-
hand side is 2.

Solution:
First we find the homogeneous solution. The characteristic equation can be fac-

tored using the hint to get

r3 − 4r2 + 14r − 20 = (r − 2)
(
r2 − 2 r + 10

)
and then we can use the quadratic equation to get r = 2, 1±3i. So the homogeneous
solution is

yh = C1e
t sin (3t) + C2e

t cos (3t) + C3e
2t.

If there were no overlap with the homogeneous solution we would use the form

Atet cos (3t) +Btet sin (3t) + Cet cos (3t) +Det sin (3t) + Et2 + Ft+G



for the particular solution, but the terms with C and D are contained in the homo-
geneous solution so we multiply everything involving this root (the A,B,C, and D
terms) by t to get the form of the particular solution:

yp = At2et cos (3t) +Bt2et sin (3t) + Ctet cos (3t) +Dtet sin (3t) + Et2 + Ft+G.

The form of the general solution is the sum of these, y = yh + yp.

(10) Consider a mass-spring system with two masses of mass m1 and m2. Mass 1 is
connected to a wall with a spring of stiffness k1 and to mass 2 with a spring of
stiffness k2. Mass 2 is a connected to a second wall with a spring of stiffness k3, as
shown below. Their displacements from the equilibrium are x1 and x2, which we will

combine into a vector x =

(
x1
x2

)
. Then if x′′ = Ax, show that the real parts of the

eigenvalues of A must be negative if the masses and spring constants are positive.

Solution: As discussed in chapter 7.4, the matrix A has the form:(
−(k1 + k2)/m1 k2/m1

k2/m2 −(k2 + k3)/m2

)
One way to see that the real parts of the eigenvalues are negative if the ki and

mi are positive is to use the fact that if λ1 and λ2 are the eigenvalues of A, then
tr(A) = λ1 + λ2 and det(A) = λ1λ2. The determinant can be simplified to

det(A) =
k1k2 + k1k3 + k2k3

m1m2

which is clearly positive. Since the trace is negative the sign of each real part must
be negative.

In fact the eigenvalues are always real in the case but that is harder to prove.

(11) Use either the Laplace transform method or the eigenvalue/eigenvector method to
find the steady state solution to the initial value problem x′ = −x− z, y′ = −x− y,
z′ = 2x+ z, x(0) = 0, y(0) = 0, z(0) = 2.

Solution: Using the eigenvalue/eigenvector method we first compute the eigenval-

ues of the coefficient matrix A =

 −1 0 −1
−1 −1 0

2 0 1

 from the characteristic equation

det(A− λI) = 0. This factors as (λ + 1)(λ2 + 1) = 0, so the eigenvalues are ±i and
−1.

Now we find the eigenvectors. For λ = −1 we row reduce

A+ I =

 0 0 −1
−1 0 0

2 0 2


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to get

 1 0 0
0 0 1
0 0 0

. The kernel of this matrix consists of vectors of the form

 0
a
0


for any a. We can choose a = 1.

For the complex conjugate pair we can use either eigenvalue. If we choose to use i,

then we row reduce A− iI to get

 1 0 1/2− i/2
0 1 i/2
0 0 0

. If we choose the last entry

of the eigenvalue to be 2, the eigenvector is

 −1 + i
−i
2

.

The general solution is x
y
z

 = C1

 0
1
0

 e−t+C2Re(

 −1 + i
−i
2

 (cos(t)+i sin(t)))+C3Im(

 −1 + i
−i
2

 (cos(t)+i sin(t)))

= C1

 0
1
0

 e−t + C2

 − cos(t)− sin(t)
sin(t)

2 cos(t)

+ C3

 cos(t)− sin(t)
− cos(t)
2 sin(t)

 .

Now we can use the initial conditions; evaluating at t = 0 gives −C2 + C3 = 0,
C1 − C3 = 0, and 2C2 = 2. So C3 = 1 and C1 = 1. For the steady state solution we
drop the first term since e−t will decay to 0. So the steady state solution is: −2 sin(t)

− cos(t) + sin(t)
2 cos(t) + 2 sin(t)


(12) Find the equilibria of the system x′ = 2y3 − 2x, y′ = x2 − 1, and determine their

stability by computing the eigenvalues of the linearized systems.

Solution: To find the equilibria we solve the pair of equations 2y3 − 2x = 0,
x2 − 1 = 0. The second equation is simpler, since it only involves x - any equilibria
must have x = ±1. Substituting these values into the first equation gives y3 = ±1,
so y = ±1 and y is the same sign as x. I.e. the two equilibria are (1, 1) and (−1,−1).

The Jacobian matrix of the functions f1(x, y) = 2y3 − 2x and f2 = x2 − 1 is(
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

)
=

(
∂(2y3−2x)

∂x
∂(2y3−2x)

∂y
∂(x2−1)

∂x
∂(x2−1)

∂y

)
=

(
−2 6y2

2x 0

)
At the equilibrium (1, 1) this becomes

(
−2 6
2 0

)
. The eigenvalues are solutions

of λ2 + 2λ − 12 = 0, which are −1 ±
√

13. Since −1 +
√

13 > 0, there is a positive
eigenvalue and the equilibrium is unstable.



At the equilibrium (−1,−1) the Jacobian becomes

(
−2 6
−2 0

)
. The eigenvalues

are solutions of λ2 + 2λ+ 12 = 0, which are −1±
√

13i. Since the real parts of these
are negative, the equilibrium is stable (nearby solutions would spiral inwards).

(13) Three identical, well-stirred tanks of with 100 liters of water in each tank are con-
nected in series with tank 1 pumping 10 liter/minute into tank 2, tank 2 pumping
10 liter/minute into tank 3, and tank 3 pumping 10 liter/minute into tank 1. If tank
1 initially has 500 grams of salt dissolved in it, and the other two tanks start at
time t = 0 with no salt, which of the following initial value problems describes the
amounts of salt in grams in each tank (x1 = salt in tank 1, x2 = salt in tank 2, x3 =
salt in tank 3).

Solution: Answer (c) is correct

x′1 =
1

10
x3 −

1

10
x1 x′2 =

1

10
x1 −

1

10
x2 x′3 =

1

10
x2 −

1

10
x3

(14) What is the dimension of the field of complex numbers when it is considered as a
vector space over the field of real numbers? Justify your answer by finding a basis.

Solution: The dimension is 2: since we can write any complex number as a + bi
where a and b are real, the set of numbers {1, i} are a basis. (The elements of this
basis are linearly independent over the real numbers; if c1 + c2i = 0, then i = −c1/c2.
Squaring that relation gives −1 = c21/c

2
2, a contradiction for real c1 and c2.)


