(1) Find the general solution to the ODE: $y^{(3)}-5 y^{\prime \prime}+12 y^{\prime}-8 y=0$.

Solution: The characteristic equation is $r^{3}-5 r^{2}+12 r-8$. If we believe in a benevolent testwriter, it is natural to look for integer solutions to polynomials of degree larger than two. So we could try $1,-1,2,-2,4,-4,8,-8$. Happily it is easy to check that 1 is a root, so the characteristic polynomial has $(r-1)$ as a factor. After dividing out this factor (you should know how to do polynomial division!) we get $r^{2}-4 r+8$. From the quadratic equation we can then find the full factorization $(r-1)(r-(2-2 i))(r-(2+2 i))$. The general solution is $y=C_{1} e^{x}+e^{2 x}\left(C_{2} \sin (2 x)+\right.$ $\left.C_{3} \cos (2 x)\right)$
(2) Find the solution to the initial value problem $y^{\prime \prime}-2 y^{\prime}+5 y=e^{2 x}, y^{\prime}(0)=0, y(0)=-1$.

Solution: We begin by finding the general solution $y=y_{h}+y_{p}$. The homogeneous solution y_{h} is determined by the characteristic equation $r^{2}-2 r+5=(r-(1+2 i))(r-$ $(1-2 i)): y_{h}=e^{x}\left(C_{1} \cos (2 x)+C_{2} \sin (2 x)\right)$.

We can find the particular solution y_{p} by the method of undetermined coefficients, i.e. we suppose that $y_{p}=A e^{2 x}$ and solve for A. Plugging in this form and dividing out the $e^{2 x}$ factors we find that $4 A-4 A+5 A=1$, or $A=1 / 5$.

Now the initial conditions can be used to determine C_{1} and C_{2}. The condition $y(0)=-1$ becomes $C_{1}+\frac{1}{5}=-1$ and $y^{\prime}(0)=0$ becomes

$$
\begin{gathered}
2 e^{x} C_{2} \cos (2 x)+e^{x} C_{1} \cos (2 x)+e^{x} C_{2} \sin (2 x)-2 e^{x} C_{1} \sin (2 x)+\left.\frac{2 e^{2 x}}{5}\right|_{x=0} \\
=\frac{2}{5}+C_{1}+2 C_{2}=0
\end{gathered}
$$

The first equation can be immediately solved for $C_{1}=-\frac{6}{5}$ and then the second for $C_{2}=\frac{2}{5}$. So the solution is $y=e^{x}\left(-\frac{6}{5} \cos (2 x)+\frac{2}{5} \sin (2 x)\right)+\frac{1}{5} e^{2 x}$.
(3) Write down the form of a particular solution y_{p} of the ODE $y^{\prime \prime}+y=x^{2} e^{x}+\cos (x)$. You do not have to determine the coefficients of the functions.

Solution: The problem is a little harder than it might look because one of the functions on the righthand side also appears in the homogeneous solution $y_{h}=$ $C_{1} \cos x+C_{2} \sin x$. So we have to add a power of x in the undetermined particular solution: $y_{p}=A x \cos x+B x \sin x+C e^{x}+D x e^{x}+E x^{2} e^{x}$.
(4) If an $n \times n$ matrix A has the property that $A^{3}=2 A$, what are the possible values of the determinant of A ?

Solution: Taking the determinant of both sides of the equation gives us $\operatorname{det}\left(A^{3}\right)=$ $\operatorname{det}(2 A)$. Because of the multiplicative property of determinants, $\operatorname{det}\left(A^{3}\right)=(\operatorname{det}(A))^{3}$.

Since each row of $2 A$ has been multiplied by 2 , $\operatorname{det}(2 A)=2^{n} \operatorname{det}(A)$. Then we have

$$
(\operatorname{det}(A))^{3}-2^{n} \operatorname{det}(A)=\operatorname{det}(A)\left((\operatorname{det}(A))^{2}-2^{n}\right)=0
$$

so either $\operatorname{det}(A)=0$ or $\operatorname{det}(A)= \pm 2^{n / 2}$.
(5) Solve the initial value problem $y^{\prime \prime \prime}-27 y=e^{3 x}, y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0$.

Solution:
First we find the homogeneous (also called complementary) solution to

$$
y_{c}^{\prime \prime \prime}-27 y_{c}=0 .
$$

To do this we have to factor the characteristic equation $r^{3}-27=0$.
One root is easy to get: $r_{1}=(27)^{1 / 3}=3$.
If we divide $r^{3}-27$ by $r-3$, the quotient is $r^{2}+3 r+9$.
With the quadratic formula we can get the other two roots, $r_{2}, r_{3}=-\frac{3}{2} \pm \frac{3 \sqrt{3} i}{2}$. With these three roots, we can construct the complementary solution:

$$
y_{c}=C_{1} e^{3 x}+C_{2} e^{-\frac{3 t}{2}} \cos \left(\frac{3 \sqrt{3} t}{2}\right)+C_{3} e^{-\frac{3 t}{2}} \sin \left(\frac{3 \sqrt{3} t}{2}\right)
$$

Next, to find the particular solution we would normally use the method of undetermined coefficients with the form $y_{p}=A e^{3 x}$.

But this is contained within the complementary solution, so instead we use

$$
y_{p}=A x e^{3 x} .
$$

Since $y_{p}^{\prime \prime \prime}=27 x A e^{3 x}+27 A e^{3 x}$, we require that

$$
\begin{gathered}
y_{p}^{\prime \prime \prime}-27 y_{p}=27 x A e^{3 x}+27 A e^{3 x}-27 x A e^{3 x} \\
=27 A e^{3 x}=e^{3 x}
\end{gathered}
$$

and so $A=1 / 27$.
So the general solution to the ODE is

$$
y=y_{c}+y_{p}=C_{1} e^{3 x}+C_{2} e^{-\frac{3 t}{2}} \cos \left(\frac{3 \sqrt{3} t}{2}\right)+C_{3} e^{-\frac{3 t}{2}} \sin \left(\frac{3 \sqrt{3} t}{2}\right)+\frac{1}{27} x e^{3 x}
$$

The initial condition $y(0)=0$ becomes $C_{1}+C_{2}=0$. Since

$$
\begin{gathered}
y^{\prime}=-\frac{3}{2}\left(\sqrt{3} C_{2}+C_{3}\right) e^{-\frac{3 x}{2}} \sin \left(\frac{3 \sqrt{3}}{2} x\right)+\frac{3}{2}\left(\sqrt{3} C_{3}-C_{2}\right) e^{-\frac{3 x}{2}} \cos \left(\frac{3 \sqrt{3}}{2} x\right)+\left(3 C_{1}+\frac{1}{27}+\frac{x}{9}\right) e^{3 x} \\
y^{\prime}(0)=\frac{3}{2} \sqrt{3} C_{3}-\frac{3}{2} C_{2}+3 C_{1}+\frac{1}{27}=0
\end{gathered}
$$

Now we compute the equation for the initial condition $y^{\prime \prime}(0)=0$

$$
\begin{gathered}
y^{\prime \prime}=\frac{9}{2} e^{-\frac{3 x}{2}}\left(\left(\sqrt{3} C_{2}-C_{3}\right) \sin \left(\frac{3 \sqrt{3}}{2} x\right)+\left(\sqrt{3} C_{3}+C_{2}\right) \cos \left(\frac{3 \sqrt{3}}{2} x\right)\right)+e^{3 x}\left(9 C_{1}+\frac{2}{9}+\frac{x}{3}\right) \\
y^{\prime \prime}(0)=-\frac{9}{2} \sqrt{3} C_{3}-\frac{9}{2} C_{2}+9 C_{1}+\frac{2}{9}=0
\end{gathered}
$$

Writing all of these initial conditions as a matrix-vector system we get:

$$
\left(\begin{array}{rrr}
1 & 1 & 0 \\
3 & -\frac{3}{2} & \frac{3}{2} \sqrt{3} \\
9 & -\frac{9}{2} & -\frac{9}{2} \sqrt{3}
\end{array}\right)\left(\begin{array}{l}
C_{1} \\
C_{2} \\
C_{3}
\end{array}\right)=\left(\begin{array}{r}
0 \\
-1 / 27 \\
-2 / 9
\end{array}\right)
$$

The row-reduced echelon form of the augmented coefficient matrix is

$$
\left(\begin{array}{rrrr}
1 & 0 & 0 & -\frac{1}{81} \\
0 & 1 & 0 & \frac{1}{81} \\
0 & 0 & 1 & \frac{1}{243} \sqrt{3}
\end{array}\right)
$$

So finally we have:

$$
y=\frac{1}{81}\left[e^{-\frac{3 x}{2}}\left(\frac{\sqrt{3}}{3} \sin \left(\frac{3 \sqrt{3}}{2} x\right)+\cos \left(\frac{3 \sqrt{3}}{2} x\right)\right)+(3 x-1) e^{3 x}\right]
$$

(6) Rewrite the initial value problem $y^{\prime \prime \prime}+y^{\prime \prime}+y=t, y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=0$ as an equivalent first-order system.

Solution: Introduce the variables $v_{1}=y^{\prime}, v_{2}=v_{1}^{\prime}=y^{\prime \prime}$ and the system becomes:

$$
\begin{gathered}
y^{\prime}=v_{1} \\
v_{1}^{\prime}=v_{2} \\
v_{2}^{\prime}=t-v_{2}-y \\
y(0)=0, v_{1}(0)=0, v_{2}(0)=0
\end{gathered}
$$

Note that rewriting the initial conditions is a required part of this answer.
(7) The matrix

$$
A=\left(\begin{array}{rrr}
a & b & 0 \\
-b & a & 0 \\
0 & 0 & 2
\end{array}\right)
$$

where a and b are real numbers, is diagonalizable, i.e. there exists a matrix P such that $P^{-1} A P=D$ where D is diagonal. Compute D.

Solution:

$$
D=\left(\begin{array}{rrr}
a+b i & 0 & 0 \\
0 & a-b i & 0 \\
0 & 0 & 2
\end{array}\right)
$$

(any other order of the eigenvalues on the diagonal is also correct).
(8) Indicate whether each of the following statements is true or false.
(a) The set of solutions $(x, y, z) \in \mathbb{R}^{3}$ to the equation $x+y+z=0$ is a vector subspace of \mathbb{R}^{3} of dimension 2 .

Solution: True. A single linear homogeneous constraint will have a solution set that is one dimension less than the ambient vector space. Alternatively we can compute this by row-reducing the coefficient matrix of the system, which in this case is the matrix $[1,1,1]$. This is already in row-reduced echelon form, with one pivot and two free variables (y and z). The number of free variables is the dimension of the solution set.
(b) The set of solutions $(x, y, z) \in \mathbb{R}^{3}$ to the equation $x+y=1$ is a vector subspace of \mathbb{R}^{3} of dimension 2 .
Solution: False. This is a nonhomogeneous system, so the solutions do not form a vector subspace.
(c) The set of solutions to the differential equation $y^{\prime \prime}+x y^{\prime}+x^{2} y=0$ is a vector space of dimension 2 .
Solution: True. See Theorem 4 of section 5.2.
(d) The set of solutions $(x, y, z) \in \mathbb{R}^{3}$ of the system below is a vector subspace of \mathbb{R}^{3} of dimension 1 .

$$
\begin{aligned}
x+2 y+3 z & =0 \\
4 x+5 y+6 z & =0 \\
7 x+8 y+9 z & =0
\end{aligned}
$$

Solution: True. The coefficient matrix has a row-reduced form with two pivots and one free variable.
(e) The polynomials $1+x, 1-x, 1+x^{2}$ are a basis for the vector space of polynomials with real coefficients of degree less than or equal to 2 .
Solution: True. A more obvious basis would be $1, x, x^{2}$, which can be obtained from these polynomials as linear combinations: $1=(1+x) / 2+(1-x) / 2$, $x=(1+x) / 2-(1-x) / 2$, and $x^{2}=-(1+x) / 2-(1-x) / 2+\left(1+x^{2}\right)$.

