(1) Use the Laplace transform to solve the initial value problem $y^{\prime \prime}+y=\cos (t)$, $y(0)=0, y^{\prime}(0)=1$.

Solution:
The transform of the ODE is

$$
s^{2} Y-1+Y=\frac{s}{s^{2}+1}
$$

Solving for $\mathcal{L}(y)=Y$ we get

$$
Y=\frac{1}{s^{2}+1}+\frac{s}{\left(s^{2}+1\right)^{2}}
$$

Normally we would combine everything on the right hand side and then use partial fraction decomposition, but in this case we already have functions we can invert using the transforms $\mathcal{L}(\sin (t))=\frac{1}{s^{2}+1}$ and

$$
\mathcal{L}(t \sin (t))=-\frac{d}{d s} \mathcal{L}(\sin (t))=\frac{2 s}{\left(s^{2}+1\right)^{2}}
$$

so $y=\sin (t)+t \sin (t) / 2$.
(2) Solve the same initial value problem using undetermined coefficients (i.e. use the decomposition $y=y_{h}+y_{p}$).

Solution: First we compute the homogeneous solution $y_{c}^{\prime \prime}+y_{c}=0$. The characteristic equation is $r^{2}+1=0$, with roots $\pm i$. This means that $y_{c}=$ $C_{1} \cos (t)+C_{2} \sin (t)$.

Next we find the particular solution. Usually we would use $A \cos (t)+$ $B \sin (t)$, but this overlaps with the homogeneous solution so we multiply by t to get $y_{p}=A t \cos (t)+B t \sin (t)$.

To substitute y_{p} into the equation we need its second derivative:

$$
\begin{gathered}
y_{p}^{\prime}=B t \cos (t)-A t \sin (t)+A \cos (t)+B \sin (t) \\
y_{p}^{\prime \prime}=-A t \cos (t)-B t \sin (t)+2 B \cos (t)-2 A \sin (t)
\end{gathered}
$$

So $y_{p}^{\prime \prime}+y_{p}=2 B \cos (t)-2 A \sin (t)=\cos (t)$ and we see that $B=1 / 2$ and $A=0$. So

$$
y=y_{c}+y_{p}=C_{1} \cos (t)+C_{2} \sin (t)+t \sin (t) / 2
$$

Now we can use the initial conditions to find that $C_{1}=0$ and $C_{2}+1 / 2=1$, so $C_{2}=1 / 2$. Finally: $y=\sin (t)+t \sin (t) / 2$, as above.

