Math 3280 Worksheet 45 Solutions

(1) Consider three tanks, each containing 1 liter. r liters of fluid per minute is sent from tank 1 to 2 , from tank 2 to tank 1 , from tank 2 to tank 3 , and from tank 3 to tank 2 . Initially tank 1 is filled with pure water, tank 2 is filled with brine at a concentration of 2 grams of salt per liter, and tank 3 is filled with brine at a concentration of 4 grams per liter.
(a) Write down the differential equations and initial conditions for the amount of salt in each tank (x_{1}, x_{2}, and x_{3}).

Solution:

$$
\begin{gathered}
x_{1}^{\prime}=-r x_{1}+r x_{2} \\
x_{2}^{\prime}=r x_{1}-2 r x_{1}+r x_{3} \\
x_{3}^{\prime}=r x_{2}-r x_{3} \\
x_{1}(0)=0 \\
x_{2}(0)=2 \\
x_{3}(0)=4
\end{gathered}
$$

(b) Solve the differential equations.

Solution:

$$
x^{\prime}=r\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -1
\end{array}\right)
$$

The eigenvalues of the coefficient matrix are $0,-r,-3 r$, with eigenvectors $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$, $\underset{\text { So }}{\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right) \text { respectively. }}$

$$
x=C_{1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+C_{2} e^{-r t}\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right)+C_{3} e^{-3 r t}\left(\begin{array}{r}
1 \\
-2 \\
1
\end{array}\right)
$$

The initial conditions give us a linear system whose solution is $C_{1}=2, C_{2}=2$, $C_{3}=0$. So

$$
x=2\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)+2 e^{-r t}\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right)
$$

(c) Find a value of r so that the concentration of salt in tank 3 is three times that of tank 1 at time $t=1$ minute.

Solution:
Substituting $t=1$ into the equation $x_{3} / x_{1}=3$ we can solve for $r=\ln (2)$.
(2) The spread of many diseases are modeled by various SIR ODE models, where SIR is an acronym for Susceptible, Infected, and Recovered. In the following version, we assume a population has a constant proportional death rate of d and a birth rate of b. The disease is transmitted at a rate $c I S$, and infected people recover at a rate proportional to I, giving the equations:

$$
\begin{gathered}
\frac{d S}{d t}=b-d S-c I S \\
\frac{d I}{d t}=c I S-(d+g) I \\
\frac{d R}{d t}=g I-d R
\end{gathered}
$$

For a population with $b=d=1$, when is the disease-free equilibrium point (disease free meaning $I=R=0$) stable?

Solution:
If $I=R=0$, then if $\frac{d S}{d t}=0$ we must have $S=b / d$ which is 1 for $b=d=1$. So the equilibrium point is $(1,0,0)$.

The Jacobian is

$$
J=\left.\left(\begin{array}{ccc}
-1 & -c S & 0 \\
c I & c S-g-1 & 0 \\
0 & g & -d
\end{array}\right)\right|_{S=1, I=0, R=0}=\left(\begin{array}{ccc}
-1-c I & -c & 0 \\
0 & c-g-1 & 0 \\
0 & g & -d
\end{array}\right)
$$

Expanding the determinant along the first or last column we find

$$
\operatorname{det}(J-\lambda I)=(-\lambda-1)^{2}(c-g-1-\lambda)
$$

so the eigenvalues are $-1,-1, c-g-1$. In order for the equilibrium point to be stable, we need all of the real parts of the eigenvalues to be nonpositive, so $c-g-1 \leq 0$, or $1+c \geq g$. This quantifies the fact that the recovery rate from infection, g, must be one unit larger than the transmission interaction rate c.

